
Power Relay Module
(PRM3) Software
Documentation
Software documentation for the Power Relay Module PRM3

Mask control
Dashboard control of PRM3
Modbus Control of PRM3
Lua Scripting with PRM3
SCPI Control of PRM3
JSON WebAPI relay control

Mask control
Back to Main Power Relay Module (PRM3) Product Page.

The eGauge PRM3 has 3 independently controlled relay contacts. When controlling polyphase loads
such as single or three-phase loads, the multiple relay contacts used should be open and closed
simultaneously to avoid damaging the equipment. Neutral conductors always remain connected
and are not switched by a relay.

To control relay contact simultaneously, the PRM3 interface provides commands to be used with
masks. The command used will vary based on the interface used.

Command Description

Mask Any relay bit set (1) will be CLOSED, any bit unset (0) will
be OPENED

Set Any relay bit set (1) will be CLOSED, any bit unset (0) will
be UNAFFECTED

Clear Any relay bit set (1) will be OPENED, any bit unset (0) will
be UNAFFECTED

List of Masks
Mask (Decimal) Mask (Binary) Relays SET

0 000 None

1 001 1

2 010 2

4 100 3

3 011 1 and 2

5 101 1 and 3

6 110 2 and 3

https://kb.egauge.net/books/egauge-hardware-product-pages/page/power-relay-module-prm3

7 111 1, 2, and 3

Understanding the mask
The mask value is a set of 3 bits. The lowest bit (position 0) is for the lowest numbered relay (#1).
The middle bit (position 1) is for the middle numbered relay (#2), and the highest bit (position 2) is
for the highest numbered relay (#3).

The decimal value is simply the binary value, which can be determined by adding the set bits (1)
values.

Depending on the command used, the set and unset bits will affect their respective relays
differently.

MASK is the binary mask value sent or received
RELAY is the relay for the respective column values
VALUE is the decimal value for that bit
BIT POS is the bit position

 Decimal Value: 0 Decimal Value: 1 Decimal Value: 2

Decimal Value: 4 Decimal Value: 3 Decimal Value: 5

Decimal Value: 6 Decimal Value: 7

https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-000.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-001.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-010.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-100.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-011.png
https://kb.egauge.net/uploads/images/gallery/2023-03/iTNrelay-mask-table-101.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-110.png
https://kb.egauge.net/uploads/images/gallery/2023-03/relay-mask-table-111.png

Dashboard control of PRM3
eGauge meter Dashboard Control
Back to Main Power Relay Module (PRM3) Product Page.

A "Switch" can be toggled to control the relay when connected to the eGauge via USB by using the
Mobile-Friendly dashboard interface.

1. From the classic interface, click View -> Mobile Friendly.
2. Use the 3-dot menu, click View -> Dashboard to load the Dashboard interface.
3. Edit the dashboard to add a new dashlet.
4. Choose "Switch":

5. Exit the editing mode on the dashboard and click the newly added dashlet to configure it.
6. Click the drop-down for "Relay to control" and choose the PRM3, which relays the switch

should control and the icon. Split-phase loads with a single hot and neutral will use 1 relay
inputs, single-phase loads with 2 hots will use 2 relay inputs, and three-phase loads will
use all 3 relay inputs.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/power-relay-module-prm3
https://kb.egauge.net/books/egauge-meter-ui/page/dashboard
https://kb.egauge.net/link/36#bkmrk-how-to-add%2C-delete%2C-
https://kb.egauge.net/uploads/images/gallery/2023-02/rtximage.png

7. The selected relay(s) can now be toggled by clicking the slider button under the icon:

https://kb.egauge.net/uploads/images/gallery/2023-02/XoZimage.png
https://kb.egauge.net/uploads/images/gallery/2023-02/hZQimage.png

Modbus Control of PRM3
Back to Main Power Relay Module (PRM3) Product Page.

The Power Relay Module acts as a Modbus server. As such, it responds to requests sent by a client.
It never initiates a request on its own.

Connection and Power
Power
The eGauge PRM3 may be powered using the USB-A or the 4-pin port with a 5V/500mA power
supply. Only power the PRM3 with one of these methods.

Communication
The PRM3 uses the 4-pin port for Modbus RTU RS-485 serial communication.

Modbus Registers
All registers are holding registers. They can be read with "Read Holding Registers" (function code
0x03) and written with "Write Single Register" (function code 0x06). The PRM3 uses base-0
addressing.

Address Size Name Type Description

0 1 RS-485 param Unsigned 16-bit
integer

Baud Rate code (bits
0..7) and parity (bits
8..15)*

1 1 Unit number Unsigned 16-bit
integer

Modbus unit number
(1–247)

2 1 Relay Mask Unsigned 16-bit
integer

Relay status. On
write, if bit (n-1) is
set, relay n is closed,
opened otherwise. On
read, if bit (n-1) is
set, relay n is
closed, open
otherwise.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/power-relay-module-prm3

3 1 Relay Set Unsigned 16-bit
integer

Close relays. On
write, if bit (n-1) is
set, relay n will be
closed, unchanged
otherwise. On read, if
bit (n-1) is set, relay n
is closed, open
otherwise.

4 1 Relay Clear Unsigned 16-bit
integer

Open relays. On
write, if bit (n -1) is
set, relay n will be
opened, unchanged
otherwise. On read, if
bit (n-1) is set, relay n
is closed, open
otherwise.

100 2 EEPROM writes Unsigned 32-bit
integer

Number of times
EEPROM has been
written.

102 2 Relay 1 Count Unsigned 32-bit
integer

Relay 1 switch count.

104 2 Relay 2 Count Unsigned 32-bit
integer

Relay 2 switch count.

106 2 Relay 3 Count Unsigned 32-bit
integer

Relay 3 switch count.

108 1 Min. open duration Unsigned 16-bit
integer

Minimum duration (in
seconds) for which a
relay stays open.

109 1 Min. close duration Unsigned 16-bit
integer

Minimum duration (in
seconds) for which a
relay stays closed.

RS-485 parameter register*
The “RS-485 param” register provides access to the RS-485 baud rate and parity.

The upper eight bits define the parity as shown below. Note the numerical value is the decimal
value of the ASCII code, not a binary value.

ASCII code Value (decimal) Parity Mode

n 110 no parity

e 101 even parity

o 111 odd parity

The lower eight bits define the baud rate as shown below:

Value (decimal) Baud Rate

1 9600 bps

2 19200 bps

4 38400 bps

6 57600 bps

12 115200 bps

For example, a value of 0x6506 would indicate 57600 bps and even parity.

Unit Number
The “Unit number” register defines the Modbus unit number under which the device responds. By
default, this value is 1 but it can be set to any number in the range from 1 to 247.

Relay Commands

The “Relay mask", “Relay set", and “Relay clear" registers provide access to the relays.

They all return the same value when read: in the returned value, if bit (n − 1) is set, it means that
relay n is closed and if it is cleared, it means that the relay is open.

When written, the three registers have different behavior: “Relay mask" sets all the relays as
indicated by the written value. That is, if bit (n − 1) is set, relay n will be closed and otherwise it
will be opened. In contrast, writing “Relay set" will only close the relays for which the
corresponding bit is set. Similarly, writing “Relay clear” will only open the relays for which the
corresponding bit is set.

SunSpec block
The Power Relay Module also provides an address block to enable device identification according to
the SunSpec standard.

Since SunSpec does not have a standardized model for relay controllers, the only model block
provided is the Common Model (SunSpec DID 0x0001) as shown below. This block allows
identifying the device by manufacturer and model name.

For more information about using masks to control relays see this article.

https://kb.egauge.net/books/other-hardware-documentation/page/mask-control

Address Size Name Type Description

40000 2 SunSpec_ID Unsigned 32-bit
integer

Value = 0x53756e53
("SunS”).

40002 1 SunSpec_DID Unsigned 16-bit
integer

Value = 0x0001
(Common Model
Block)

40003 1 SunSpec_Length Unsigned 16-bit
integer

Value = 65 (Length
of block).

40004 16 Manufacturer 32-bit string Manufacturer
"eGauge".

40020 16 Model 32-bit string Model name (e.g.,
“PRM3").

40036 8 Options 16-bit string Installed options.

40044 8 Version 16-bit string Product version (e.g.,
"1.00").

40052 16 SerialNumber 32-bit string Serial number (e.g.,
"3N013453”).

40068 1 DeviceAddress Unsigned 16-bit
integer

Modbus unit number.

40069 1 SunSpec_DID Unsigned 16-bit
integer

Value = 0xffff (End
Marker).

40070 1 SunSpec_Length Unsigned 16-bit
integer

Value = 0x0000.

Accessing the PRM3 from a Windows PC

Locate the COM port of the PRM3
1. Open the Device Manager, which can be done by opening the Start Menu and typing

"Device Manager" and clicking "Open":

eGauge Systems does not test or guarantee safety or accuracy of third party software.

2. Expand the "Ports (COM & LPT)" section:

https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680105112717.png
https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680102512421.png

If you have multiple "USB Serial Device" entries, you may unplug the eGauge PRM3, and
plug it back in to see which COM port appears when it is connected.

Using QModMaster to communicate with relay

1. Install and open the QModMaster Modbus master simulator.
2. Click Options and "Modbus RTU..." to configure the Modbus connection

3. Change the COM port number and other parameters if necessary and press OK. The
defaults RS-485 settings for the eGauge PRM 3 are 19200 baud, 8 data bits, 1 stop bit, no
parity:

4. Open the Options menu again and go to Settings, and change Base Addr to the number 0:

https://sourceforge.net/projects/qmodmaster/
https://kb.egauge.net/uploads/images/gallery/2023-03/image.png
https://kb.egauge.net/uploads/images/gallery/2023-03/7glimage.png

Using an incorrect "Base Address" will result in reading or writing to a register one
address lower or higher than the intended register address!

5. Ensure Modbus Mode is set to RTU and click the "connect" button in the toolbar below the
"Options" and "Commands" menus:

6. First, we will set the mask of the relay to 6 (110) to open relay 1, and close relays 2 and 3.
- Ensure the Slave Address (Unit Number) is set correctly. The PRM3 by default is set to 1
- Choose "Write Single Register (0x06)"
- Set Start Address 2 (decimal format)
- Choose "Bin" (binary) for Data Format, this is easier to work with masks
- In the box enter "110" and click outside the number entry box to save it there
- Click the "Read/Write" button next to the connect button

After sending, the "Packets" (blue text at bottom) number should increment.

https://kb.egauge.net/uploads/images/gallery/2023-04/c8iimage.png
https://kb.egauge.net/uploads/images/gallery/2023-03/oZZimage.png

7. Read back the register to confirm the mask was set. Change Function Code to "Read
Holding Registers (0x03)", and ensure "Number of Registers" is set to 1 (as it is a 16-bit
value) and Data Format as "Bin". Click the Read/Write button again and the Packets
should increment. The box should still show "110", meaning relay 1 is open, and relays 2
and 3 are closed.

https://kb.egauge.net/uploads/images/gallery/2023-03/yb3image.png
https://kb.egauge.net/uploads/images/gallery/2023-03/SwOimage.png

8. Let's turn relay 1 on and leave 2 and 3 alone, we will use the "Relay Set" register for this
(address 3). Change the "Start Address" to 3, the Function Code back to Write Single
Register, and the 110 in the text box to 001 (leading zeros are not necessary). This tells
the PRM3 to close relay 1, and leave 2 and 3 in their current state. Press Read/Write and
note the packet increment:

9. Finally, we'll read current the mask state of the relay. Change the Function Code to Read
Holding Registers and click the Read/Write button. We can read from any of the Relay
registers to get the current mask from the relay. Note the packet increase. The text area
below shows the data received, which is 111 to indicate all 3 relays are closed.

https://kb.egauge.net/uploads/images/gallery/2023-03/zDcimage.png
https://kb.egauge.net/uploads/images/gallery/2023-03/lsqimage.png

Lua Scripting with PRM3
Back to Main Power Relay Module (PRM3) Product Page.

The eGauge meter provides a Lua scripting environment for interaction and control of the eGauge
PRM3 Power Relay Module when connected to the eGauge via USB.

Navigating to the Lua Scripting
interface

Control script

Control scripts can be used to confrol supported equipment such as the eGauge Power Relay
Module (PRM3).

For example, the following script reads the instantaneous value of a register called "Temperature"
and controls a PRM3 relay contact. If the temperature is lower than 21 C, relay number 0 of the
PRM3 is closed (activated), otherwise opens (turns off) relay number 0. It then sleeps for 15
minutes before checking again.

In the real world, the control script should be more advanced

See the main Lua Scripting Overview Control Scripts section for additional Lua Control
environment information.

There is risk of damaging external equipment using control scripts. Only skilled Lua
developers familiar with the eGauge meter and software should attempt to use Lua control
scripts.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/power-relay-module-prm3
https://kb.egauge.net/link/321#bkmrk-lua-environment-for-

dev = ctrl:dev({interface='relay'})
 relay = dev:interface('relay')

 while true do
 print("Temperature is currently: " .. __r("Temperature"))
 if __r("Temperature") < 21 then
 relay:close(0)
 else
 relay:open(0)
 end
 sleep(60*15)
 end

SCPI Control of PRM3
Back to Main Power Relay Module (PRM3) Product Page.

SCPI introduction
SCPI (pronounced "skippy") stands for "Standard Commands for Programmable Instruments" and
uses ASCII encoded strings. Com mands are entered one line at a time. Each line must end with a
carriage-return (ASCII code 13) and/or line-feed character (ASCII code 10). Line length (including
line terminators) is limited to at most 64 characters. Commands are caseinsensitive, so RELAY has
the same meaning as relay , for example.

Most SCPI commands may be abbreviated to the first four characters. Required command
characters are shown in upper case, optional ones in lower case. For example, MODBus indicates
that the command may be abbreviated to just MODB .

Each SCPI command returns a single response-line which is terminated by a carriage-return line-
feed sequence. The response is INVALID COMMAND if there was an error processing the command. If
the command was processed successfully the response is OK or a command-specific response.

Connection and Power
The eGauge PRM3 unit communicates SCPI and gets power over the USB-A connection. The USB
connection provides a CDC ACM virtual serial port for the host to communicate with using serial.

Serial Settings
The SCPI interface uses the following serial parameters:

19200 baud
1 start bit
8 data bits, LSB first
no parity
1 stop bit

SCPI commands

While SCPI convention normally would allow specifying multiple commands in a single line
by separating the commands with a semicolon, the Power Relay Module does not support
this convention and always expects a single command per line.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/power-relay-module-prm3

he SCPI commands supported by the Power Relay Module are shown below. The first column shows
the syntax of the command, the second column the response type, and the third is a description of
the command.

For response type devid, the return value consists of a string containing the manufacturer name,
model name, product serial-number, and the product version, separated by commas. For example,
the returned devid might be eGauge,PRM3,3N013453,1.00 .

For response type status, the return value consists of either OK or INVALID COMMAND . For response
type decimal, the return value consists of either INVALID COMMAND or a decimal integer number
string. For response type parity, the return value consists of either INVALID COMMAND or a single
character, where the character n indicates no parity, e indicates even parity, and o indicates odd
parity.

Command Response Description

*IDN? devid Return device identifier

EPRom? decimal Return number of times the EEPROM
has been written.

RELAy:n? decimal Query status of relay n, where n is one
of 1, 2, or 3. Returns string 0 if relay
is open, 1 if it is closed.

RELAy:n cv status Open or close relay n , where n is one
of 1, 2, or 3. If cv is 0 or OFF , the
relay is opened, if 1 or ON , the relay
is closed.

RELAy:n:COUNt? decimal Return number of times relay n has
been switched (opened or closed).
The value of n must be one of 1, 2, or
3.

RELAy:MASK? decimal Query status of all relays. The
returned number has bit (n-1) set if
relay n is closed, cleared otherwise.
For example, return value 6 would
indicate that relay 1 is open (bit 0 is
cleared) and relays 2 and 3 are closed
(bits 1 and 2 are set).

RELAy:MASK m status Open or close relays as indicated by
mask m. If bit (n-1) is set, relay n is
closed, otherwise it will be opened.

When controlling polyphase loads, the mask commands should be used for simultaneous
opening and closing of the multiple relay inputs.

https://kb.egauge.net/books/other-hardware-documentation/page/mask-control

RELAy:MASK:SET m status Close relays as indicated by mask m.
If bit (n-1) is set, relay n is closed,
otherwise relay n will remain in its
current state.

RELAy:MASK:CLR m status Open relays as indicated by mask m.
If bit (n-1) is set, relay n is opened,
otherwise relay n will remain in its
current state.

RELAy:MIN:OFF? decimal Query the minimum duration for
which a relay remains open. The
returned number is the duration in
seconds.

RELAy:MIN:OFF d status Set the minimum duration for which a
relay remains open to d seconds. The
duration must be an integer in the
range from 0..255.

RELAy:MIN:ON? decimal Query the minimum duration for
which a relay remains closed. The
returned number is the duration in
seconds

RELAy:MIN:ON d status Set the minimum duration for which a
relay remains open to d seconds. The
duration must be an integer in the
range from 0..255.

MODBus:BAUD? decimal Returns the baud rate of the RS-485
port.

MODBus:BAUD n status Sets the RS-485 baud rate to n baud.
The value of n may be one of 9600,
19200, 38400, 57600, or 115200.

MODBus:PARIty? decimal Returns the parity used for the RS-
485 port.

MODBus:PARIty p status Sets the RS-485 parity. If p is n , no
parity is selected, if e , even parity is
selected, and if o , odd parity is
selected.

MODBus:UNIT? decimal Returns the MODBUS unit number of
the device.

MODBus:UNIT n status Sets MODBUS unit number of the
device to n . The value of n may be
in the range from 1 through 247.

Accessing the PRM3 from a Windows PC
eGauge Systems does not test or guarantee safety or accuracy of third party software.

Locate the COM port of the PRM3
1. Open the Device Manager, which can be done by opening the Start Menu and typing

"Device Manager" and clicking "Open":

2. Expand the "Ports (COM & LPT)" section:

https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680105112717.png

If you have multiple "USB Serial Device" entries, you may unplug the eGauge PRM3, and plug it
back in to see which COM port appears when it is connected.

Connect to the COM port using PuTTY

1. Install and open the PuTTY terminal emulator.
2. Change "Serial line" to the COM port found in the device manager, the "Speed" to 19200

and "Connection type" to "Serial" and press Open:

https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680102512421.png
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

3. You may now enter SCPI commands followed by the "Enter" key.

Back-spaces may not work correctly and result in an invalid command error. Commands
entered using copy and paste may also not work correctly and result in an invalid command
error.

https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680106093423.png

https://kb.egauge.net/uploads/images/gallery/2023-03/image-1680107447653.png

JSON WebAPI relay control
Back to Main Power Relay Module (PRM3) Product Page.

Starting in firmware v4.4, the PRM3 may be controlled with EG4xxx series meters by using the
eGauge JSON-based WebAPI /ctrl endpoint. The following is a Python script showing some possible
miscellaneous interactions with an eGauge PRM3.

WebAPI documentation may be found at https://egauge.net/support/webapi. The /ctrl
endpoint is used for controlling the PRM3.

The eGauge Python Library contains helper functions for authentication and requests and is
available via Bitbucket and PyPi. Demonstration code provided by eGauge Systems typically
requires this library.

To interact with the WebAPI control service, the authenticated user must have permission
"Allowed to view all data, change settings, and control devices from anywhere"

#!/usr/bin/env python3

Example script interacting with an eGauge PRM3 power relay module through a
meter's WebAPI. The PRM3 must be connected to the eGauge via USB.

This script uses the eGauge Python library, available from bitbucket or pip:
https://bitbucket.org/egauge/python/src/master/egauge/
https://pypi.org/project/egauge-python/
WebAPI documentation: https://egauge.net/support/webapi

Requires firmware version 4.4 or greater

from egauge import webapi

URI = "https://device-url"
USR = "my_meter_username"

https://egauge.net/support/m/prm3
https://kb.egauge.net/books/egauge-meter-ui/page/checking-and-upgrading-firmware
https://egauge.net/support/webapi
https://bitbucket.org/egauge/python/src/master/egauge/
https://pypi.org/project/egauge-python/

PWD = "my_meter_password"

dev = webapi.device.Device(URI, webapi.JWTAuth(USR, PWD))

USB_PORT = "USB1" # what USB port the relay is connected to

get the connected relay(s) information
relays = dev.get("/ctrl/device")
"""e.g.,
{
 'result':
 [
 {
 'path': ['net.egauge.slowd', 'USB1'],
 'mfg': 'eGauge',
 'model': 'PRM3',
 'sn': '00000004',
 'prot': 'SCPI',
 'link': 'serial',
 'quality': '1',
 'interface': ['relay', 'scpi']
 }
]
}
"""

get the serial number of the PRM3 connected to port USB_PORT
we use the SN to identify which relay to send commands to
for relay in relays["result"]:
 if USB_PORT in relay["path"]:
 relay_sn = relay["sn"]

get the control interfaces and available methods for the PRM3 relay
e.g., open_mask, set_mask, get_mask
methods = dev.get("/ctrl/interface")["result"]

get the relay mask
https://egauge.net/support/m/prm3/mask

payload = {
 "attrs": {"sn": relay_sn},
 "method": "relay.get_mask",
 "args": []
}

store the transaction ID of the request
e.g., {'result': {'tid': 897412938}}
tid = dev.post("/ctrl/call", payload)["result"]["tid"]

get the response. e.g., {'result': 3} means relays 0 and 1 are closed, and
2 is open https://egauge.net/support/m/prm3/mask
print(dev.get(f"/ctrl/call/{tid}")["result"])

set the mask to 5 (close relay 0 and 2, open relay 1).
Use relay.open_mask and relay.close_mask to only open OR close relays
payload = {
 "attrs": {"sn": relay_sn},
 "method": "relay.set_mask",
 "args": [5]
}

make the request, store the transaction ID
tid = dev.post("/ctrl/call", payload)["result"]["tid"]

check the transaction response. This should generally be {'result': False}
print(dev.get(f"/ctrl/call/{tid}")["result"])

we can also send arbitrary SCPI commands, such as configurations.
here we set the Modbus baud rate to 9600:
payload = {
 "attrs": {"sn": relay_sn},
 "method": "scpi.exec",
 "args": ["MODBus:BAUD 9600"]
}

tid = dev.post("/ctrl/call", payload)["result"]["tid"]

should be "OK"

print(dev.get(f"/ctrl/call/{tid}")["result"])

verify the baud
payload = {
 "attrs": {"sn": relay_sn},
 "method": "scpi.exec",
 "args": ["MODBus:BAUD?"]
}

tid = dev.post("/ctrl/call", payload)["result"]["tid"]

{'result': '9600\r\n'}
print(dev.get(f"/ctrl/call/{tid}")["result"])

