
Creating and Using Lua
scripts

eGauge meters in firmware 4.1 and later have built-in Lua scripting functionality. The eGauge Lua
script editor may be accessed from the Mobile Friendly interface.

Refer to the Lua Scripting Overview article for full details about the meter's Lua scripting interface.

If using the classic interface, click on View -> Mobile-Friendly:

Next, navigate to Setup -> Lua and choose the appropriate script type:

Lua scripting is an advanced topic. eGauge Support cannot review code and has limited
support for troubleshooting Lua scripts.

https://kb.egauge.net/books/advanced-egauge-operation/page/lua-scripting-overview
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406675023.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406732271.png

Formulas script
Creating lua functions in the Formulas script editor will allow the functions to be used in a formula
register. For example, here are two functions made in the Lua Formulas script editor that will return
the min or max of two numbers:

They may then be used in a formula register:

And we may see the registers work as defined by the script functions:

Tariff script

https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406949779.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407153301.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407218019.png

Advanced time-of-use or tiered billing may be performed in this Lua scrript.

A tariff script should provide (at least) a cost(register, negate, schedule) function which
calculates the incremental cost based on the energy-use recorded by register. negate can be set to
true if the register's value counts down for power consumption. schedule is optional and can be set
to the (non-default) name of the schedule to use when calculating the cost.

A formula register of type "monetary" would be used with the cost() function.

For an example billing script, from the classic interface:

1. Navigate to Settings -> Billing.
2. Choose Xcel Colorado as the tariff provider.
3. Click "OK" to save and go back to the main settings page.
4. Go back to Settings -> Billing.
5. Change the tariff providert to "custom"
6. Click the "Customize tariff script" button, which will open a copy of the Xcel Colorado

billing tariff in the Lua script editor.

Alerts script
Alerts scripts work the same as Formula scripts, but are used in eGauge meter alerts, configured in
Settings -> Alerts.

Control script

Control scripts can be used to confrol supported equipment such as the eGauge Power Relay
Module (PRM3).

For example, the following script reads the instantaneous value of a register called "Temperature"
and controls a PRM3 relay contact. If the temperature is lower than 21 C, relay number 0 of the
PRM3 is closed (activated), otherwise it opens (turns off) relay number 0. It then sleeps for 15
minutes before checking again.

In the real world, the control script should be more advanced

See the main Lua Scripting Overview Control Scripts section for additional Lua Control
environment information.

There is high risk of damaging external equipment using control scripts. Only skilled Lua
developers familiar with the eGauge meter and software should attempt to use Lua control
scripts.

https://kb.egauge.net/link/321#bkmrk-lua-environment-for-

dev = ctrl:dev({interface='relay'})
relay = dev:interface('relay')

while true do
 print("Temperature is currently: " .. __r("Temperature"))
 if __r("Temperature") < 21 then
 relay:close(0)
 else
 relay:open(0)
 end
 sleep(60*15)
end

Persistent variables
See the main Lua Scripting Overview section on Persistent variables.

Persistent variables are variables that are preserved between reboots or power cycles.

The following Formula script creates and updates a peristent variables with a given name and
number passed to it in a formula register, and prints debug to the output log:

A register is configured to run the formula script:

This creates or updates a persistent variable called "variable test 1" with the current time.

function persistent_variable_example(name, number)

 obj = persistent:new(name, number, "Variable stored by formula function persistent_variable_example")

 current_value = obj:get()
 print(name .. " currently has value " .. current_value)

 print("updating " .. name .. "to new value " .. number)

 obj:set(number)
end

https://kb.egauge.net/link/321#bkmrk-module-persistent
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676411385422.png

The Formula script editor shows the print debug as the variable is updated once a second as the
formula register is run:

While this particular example is rather pointless, persistent variables may be used in any Lua
scripts. Control scripts are executed continuously, and a formula register would not need to be
created to run it.

15:26:28.168 variable test 1 currently has value 22.043333333333
15:26:28.168 updating variable test 1 to new value 22.043611111111
15:26:29.171 variable test 1 currently has value 22.043611111111
15:26:29.172 updating variable test 1 to new value 22.043888888889
15:26:30.168 variable test 1 currently has value 22.043888888889
15:26:30.168 updating variable test 1 to new value 22.044166666667
15:26:31.168 variable test 1 currently has value 22.044166666667
15:26:31.168 updating variable test 1 to new value 22.044444444444

Please visit kb.egauge.net for the most up-to-date documentation.

https://kb.egauge.net

