
Advanced eGauge
Operation
Covers advanced operations, such as working with Alerts and other advanced software features

USB thumb-drive functionality

Automated USB Export and Upgrade scripting file
USB Data Exports through LCD
Formatting a USB stick on Windows 10

Alerts

Alerts and Email Gateway with SendGrid
Configuring eGauge Alerts

Zero out data/spikes tutorial
eGauge language options and adding new languages
High Gain Mode
Connecting via the eGauge proxy server using IE 10/11
Monitoring High Voltage Systems
Formula registers and remote devices
Register ID and location
Working With Max Demand Export Data
Monetary registers
Lua Scripting

Lua Scripting Overview
Creating and Using Lua scripts

USB thumb-drive
functionality
eGauge Core/Pro have USB and thumb-drive storage functionality

USB thumb-drive functionality

Automated USB Export and
Upgrade scripting file
Introduction
Starting with firmware v3.4, eGauge firmware supports USB Mass-Storage devices on hardware
with USB ports (e.g., EG4015 (Core) and EG4030 (Pro)). Both Windows VFAT and Linux EXT3
filesystems are supported. When the eGauge device detects a valid storage device, it will
automatically bring up a USB Storage menu on the LCD screen. From there, it is possible to select
various operations, such as:

Creating a backup of all eGauge data
Exporting data to a CSV (comma-separated-values) file.
Updating the device firmware.
Ejecting (unmounting) the storage device so it can be removed safely.

For flexibility and to simplify operations when it is necessary to perform the same USB Storage task
on multiple devices, the firmware also supports a script file called auto.run. When this file is
present in the top-level directory (root folder) of the USB storage device, it will be executed as soon
as the USB storage device is detected by the firmware. The details of how this file is executed are
specified below.

Scripting Language
The auto.run file consists of a sequence of text lines, each line containing a command. Commands
are executed in sequence, one by one. If a command fails for any reason, script execution stops
and the most recent error is displayed on the LCD screen. The operator needs to acknowledge the
error by pushing the multiswitch button and, once that is done, the USB Storage menu is displayed.

In the absence of errors, script execution stops upon reaching the end of the script file or after
execution of an "eject" command (see below). After reaching the end of the script, the USB

https://www.egauge.net/revs/
https://kb.egauge.net/books/general/page/how-do-i-perform-a-backup-and-restore-of-the-egauge-data

storage menu is displayed on the LCD. After an "eject" command, the LCD screen reverts to
normal operation. The USB storage device is then no longer accessible until the USB storage
device is removed and reinserted into the USB port or the device is rebooted (e.g., power cycled or
rebooted via firmware).

Script files may contain line-comments that start with a hash character (#). The hash character
and any following characters up to the end of the line are ignored.

Script Commands
In the following descriptions, square brackets are used to indicate optional parts of a command.
Italics is used as place-holders for variable content.

Backup the eGauge device data to the file specified by FILENAME_TEMPLATE. This string may
contain references to variables that are expanded as follows:

Variable Reference Expands to Example

${DEVNAME} eGauge device name eGauge1234

${SN} eGauge serial number 1701260002

${TIME} current date and time 20180411-1310

If FILENAME_TEMPLATE is omitted, the template:

backup-${DEVNAME}-${TIME}.bin

is used by default.

Export eGauge device data to the file specified by FILENAME_TEMPLATE. The data is saved in
comma-separated-values (CSV) format. The file-name template may use the same variables as the

backup [FILENAME_TEMPLATE]

export [PERIOD [GRAN [FILENAME_TEMPLATE]]]

backup command. In addition, the following variables are supported:

Variable Reference Expands to Example

${PERIOD} export time-period ytd

${GRAN} export granularity hour

PERIOD specifies the time period of the data to be exported:

Period specified Time range covered

day Most recent 24 hours of data are exported.

month Most recent 31 days of data are exported.

year Most recent 366 days of data are exported.

all All data is exported.

dtd day-to-date: export data from midnight up to current time

mtd month-to-date: export data from start of month up to
current time

ytd year-to-date: export data from start of year up to current
time

GRAN specifies the granularity (resolution) with which the data is exported:

Granularity specified Resolution

sec Second resolution (or best available).

min Minute resolution (or best available).

quarter 15-minute resolution (or best available).

hour Hour resolution (or best available).

day Day resolution.

Note that the eGauge device database internally uses varying granularity to balance storage
requirements with the ability to retain data for long time periods. Specifically, second-by-second
data is typically retained only for the most recent hour, then dropping to minute-granularity, until
at last day-by-day data is available for the longest amount of time (e.g., 60 years). The granularity
specified in the export command is the finest resolution to be used during the export. If the
database doesn't have the data available in the desired resolution, it will automatically exported in
the best available resolution.

Also worth mention is that day-granularity data is captured every day at midnight UTC. The date
and time exported in the CSV file is converted to the device's time-zone, which means the hour
seen in the exported data may be one or the other, depending on whether or not daylight savings
is in effect. For example, in US/Mountain time-zone, day-granularity data is captured at 6pm

(18:00) during the summer months and at 5pm (17:00) during the winter months.

Update the device firmware using the file specified by PATH. If PATH is omitted, the file fw.bin will
be used.

The update will be performed only if the file contains a firmware newer than the one that is
currently installed. However, if option "force" is specified after the file path, the update will be
performed regardless of the version currently installed on the eGauge device.

After a successful update, the LCD screen will indicate that the device needs to be rebooted. The
operator needs to confirm this by pushing in the multiswitch button and that point, the eGauge
device reboots itself to activate the new firmware.

This command ejects (unmounts) the USB storage device and stops script execution. Once the
command has finished, the LCD screen returns to normal operation and it is safe to remove the
USB storage device from the USB port at that point.

Example Script
In the following example, let's assume the device name is "eGauge1234" and the commands are all
executed on April 1st, 2018, at 1:14pm (13:14).

update_fw [[PATH] force]

eject

This is a comment. It has no effect on execution.

OK, let's do a backup first:
backup # will be saved in "backup-eGauge1234-20180401-1314.bin"

Export data to "data-eGauge1234-ytd-hour.csv":
export ytd hour data-${DEVNAME}-${PERIOD}-${GRAN}.csv

Eject USB storage and return eGauge device to normal operation:
eject

USB thumb-drive functionality

USB Data Exports through
LCD
Data can be exported directly from eGauge 4xxx meters using a USB mass storage device. These
exports automatically contain day-granular data. All data from epoch (the date set in "Date and
Time Recording Started" under Settings -> General Settings) until the date and time the export
was initiated is copied.

To select a specific granularity or time range (or otherwise automate USB exports), an auto.run file
must be created and loaded on the USB mass storage device (this article has more information).

To begin the process, insert a mass storage device formatted as EXT3 or VFAT. The "Storage Menu"
will appear. Menu navigation is performed using the multiswitch button. Moving the switch left or
right will change the selected option. Pushing the multiswitch in will confirm the selection. "Export
data" should be highlighted by default. To begin the export, push the multiswitch in:

Image not found or type unknown

Once the export has begun, the screen will read "export started". The export process takes a
variable amount of time depending on the amount of data present on the eGauge.

Image not found or type unknown

Once the export has finished, the screen will read "export finished". The "OK" option will be
highlighted. Push the multiswitch in to acknowledge.

Image not found or type unknown

After acknowledging the export, the "Storage Menu" will appear again. Move the switch left or right
until "Exit & Eject" is highlighted. Push the multiswitch in to select this option.

https://kb.egauge.net/books/advanced-egauge-operation/page/automated-usb-export-functionality-%28eg4xxx%29

Image not found or type unknown

Once the main LCD menu appears, the USB mass storage device can be safely removed.

USB thumb-drive functionality

Formatting a USB stick on
Windows 10

1) Connect a USB stick to a PC running the latest version of Windows 10.

2) Click on the Start Menu and type in "this pc" and open the "This PC" app.

These instructions may not work for all versions of Windows and are provided as-is. eGauge
Support cannot provide additional troubleshooting or support on formatting USB sticks. An
adequate understanding of using the Windows operating system and file explorer may be
necessary to complete these instructions.

This will permanently erase all data on the selected drive or USB stick. Incorrect usage
can cause permanent data loss on the wrong drive.

3) In the "This PC" window, right-click the USB stick and choose "Format..."

https://kb.egauge.net/uploads/images/gallery/2021-05/image-1622141210699.png

4) Ensure the "File system" is set to FAT32, and "Quick Format" is checked. The "Volume label"
does not matter. Press "Start".

https://kb.egauge.net/uploads/images/gallery/2021-05/image-1622141320231.png

5) When complete, the USB stick is ready for use with an eGauge.

If copying files such as auto.run and fw.bin, open another explorer window to where the files are
downloaded on your computer, and open the USB drive. Select the file(s) and drag the files to the
explorer window of the USB stick.

https://kb.egauge.net/uploads/images/gallery/2021-05/image-1622141347791.png

6) After the files are copied, click the "back" button on the USB stick window, right-click the USB
stick drive and choose "Eject".

https://kb.egauge.net/uploads/images/gallery/2021-05/image-1622141555421.png

7) Remove the USB stick. It is now ready for use with the eGauge meter.

https://kb.egauge.net/uploads/images/gallery/2021-05/image-1622141610887.png

Alerts
All about eGauge Alert functionality

Alerts

Alerts and Email Gateway
with SendGrid
Introduction

SendGrid is a free third party service unaffiliated with eGauge which provides a consistent
outbound email delivery service. It can be used for eGauge alert delivery, and is more reliable than
not specifying an "Email Gateway". Without an "Email Gateway" configured, alert emails may be
rejected, dropped, or fail inconsistently.

It is intended as a commercial service for businesses rather than individual end users.

SendGrid allows up to 100 emails daily with the free plan.

SendGrid provides delivery information and monitoring such as email delivery failures, number of
emails sent and other features.

Disclaimer

If delivering email to only one recipient, consider using the eGuard Alert Service to send
device alerts as it is the easiest method for delivering email alerts.

You will need your own website's email address to send email from; Gmail, Yahoo, AOL and
other public email services may not work with this method.

Compatibility Notice: Beginning in June 2023, only EG4xxx will be compatible with the
SendGrid SMTP gateway. Legacy meters such as EG30xx and eGauge2 will fail to send alerts
via the SendGrid SMTP gateway.

https://kb.egauge.net/link/217#bkmrk-eguard-alert-service

SendGrid is a third party email delivery service with no affiliation with eGauge Systems. eGauge
Systems cannot guarantee email delivery, uptime, or security of using SendGrid.

Information on this page will be updated on best effort level. Information including pricing, set up
instructions, screenshots, and locations of items are not guaranteed to be up to date or consistent.

eGauge Systems does not provide any support for SendGrid's services, and cannot assist with
account creation, password recovery, or similar issues.

Pre-setup notes

Email can be delivered from the eGauge meter using SMTP server smtp.sendgrid.com and a sendgrid
API key.

If using alerts on multiple devices, it is advised to set up a unique API key for each one, so that if
the key becomes compromised or the meter becomes inaccessible and alerts cannot be disabled,
the API key can be revoked for only that meter.

API keys are passwords and are displayed only once after creation.

Setup
1. Set up API keys:

Initial account creation and setup wizard for first email
 or
Adding a second API key, or adding without the wizard from the main dashboard

2. Verify a sender identity
3. Configure the eGauge meter

Ensure the eGauge meter used is on firmware v4.0 or greater, click here for information on
checking and upgrading firmware.

https://kb.egauge.net/books/egauge-meter-ui/page/checking-and-upgrading-firmware
https://kb.egauge.net/books/egauge-meter-ui/page/checking-and-upgrading-firmware

Initial account creation and setup
wizard for first email

1. Create an account at https://sendgrid.com/

2. Click "Start" to the right of "Integrate using our Web API or SMTP relay"
Image not found or type unknown

3. In "Choose a setup method", choose "SMTP relay"

https://sendgrid.com/

Image not found or type unknown

4. Give the API key a name, like "eGauge Alerts Emails" and press "Create Key"
Image not found or type unknown

5. You will now be given the SMTP server (smtp.sendgrid.net), the username (apikey), and
password (hidden). This is the only time the password will be displayed, it should be saved
somewhere securely like an encrypted keychain if it will be used more than once. Keep
this page open or copy the password as it will be used in a later step.
Image not found or type unknown

Adding a second API key, or adding
without the wizard from the main
dashboard

1. In the main dashboard on the left-side menubar, expand Settings and click API keys.

https://kb.egauge.net/uploads/images/gallery/2022-07/image-1657573543458.png

2. Click "Create API Key" in the upper right-hand corner:

3. Choose "Restricted Access" as the API key permissions, expand the "Mail Send" section,
and click the dot on the right side of the bar next to "Mail Send" to grant that permission
Image not found or type unknown

4. Click "Create and View", and copy the API key displayed on the next screen. This will be
used to configure the eGauge meter in a later step.
Image not found or type unknown

Verify Sender Identity
You will need to set up Sender Authentication so the receiving email server trusts and accepts the
email the eGauge meter delivers. Follow the instructions for Single Sender Authentication (simple:
sends an email link to verify email address) or Domain Authentication (advanced: requires
modifying DNS entries on your website).

https://kb.egauge.net/uploads/images/gallery/2022-07/image-1657573663515.png
https://docs.sendgrid.com/ui/sending-email/sender-verification
https://docs.sendgrid.com/ui/account-and-settings/how-to-set-up-domain-authentication

Without sender authentication, you will see an error such as The from address does not match a verified
Sender Identity when sending a test email without verification completed. It will contain a link with
information to set up sender authentication.

The email address you verify will be used in the Custom "From" address setting in the eGauge meter
alert settings.

Configure the eGauge Meter
1. Navigate to Settings -> Alerts, ensure "Alert Provider" is set to "SMTP Gateway" and click

on "View/Edit Gateway & Alert Destinations". Enter the mail server hostname (
smtp.sendgrid.com), username (apikey), and the API key / password that was created
previously. For the Custom "From" Address, enter an email identity verified in the previous
step.

2. Enter the email address(es) that should receive alerts from the meter under Alert
Destinations.

3. Press "Save" at the bottom of the page, and then "Send Test Message" to the right of each
Alert Destination to ensure the delivery works.

Image not found or type unknown

https://kb.egauge.net/uploads/images/gallery/2022-07/image-1657575198734.png
https://kb.egauge.net/uploads/images/gallery/2022-07/image-1657575742987.png

Alerts

Configuring eGauge Alerts
Overview
The eGauge can be configured to send alerts based on a variety of trigger conditions. Alerts must
be configured through the eGauge interface, and the eGauge needs to be powered on and
connected to the internet in order to send alerts. There are three possible alert destinations: SMTP
(email or SMS-capable phone numbers via an email-to-SMS gateway if the cellular provider
supports), the eGuard alert service, or a custom URI for a JSON POST (advanced users).

SMTP emails credentials may be supplied, and the eGauge will use this email account to generate
alerts. Some services such as Gmail may restrict logins to browsers, or disallow the login if devices
in different locations are attempting to all log in to send alerts. For large larger deployments a
service such as SendGrid may be used.

The eGuard Alert Service is a more simplified email alert delivery service and only requires you
have an eGauge.net account.

The following article covers basic alert configuration and provides some sample alerts. Additional
information is available on an eGauge-specific basis by navigating to http://DEVNAME
.egaug.es/fundoc.html?alert where DEVNAME is the device name of your specific eGauge. To take
advantage of all alert features, the eGauge should be on the latest firmware.

Contents
Alert Basics

Configuring the Alert Service Provider

 SMTP Gateway

For meters shipped after January 1, 2024 this information may be found at: http://DEVNAME
.egauge.io/fundoc.html?alert

https://kb.egauge.net/books/advanced-egauge-operation/page/alerts-and-email-gateway-with-sendgrid
https://kb.egauge.net/link/217#bkmrk-eguard-alert-service
https://kb.egauge.net/books/general/page/where-can-i-find-my-device-name
https://www.egauge.net/revs/

 Using SendGrid

 eGuard Alert Service

 Custom Alert Destinations

Configuring Alerts

 System Alerts

 User Defined Alerts

Viewing and Acknowledging Alerts

User-defined Alert Examples

Example and description of POST data

Alert Basics
Alerts may be configured from the Settings → Alerts page and viewed from View → Alerts. There
are two types of alerts: system alerts and user-defined alerts. System alerts can report conditions
such as when the device configuration is changed or when the connection to a remote device has
been established. User-defined alerts are built arbitrary conditions that, when true, trigger the
alert. For example, you could define an alert that triggers when solar production for a period is
below a certain threshold value, or an alert that triggers when the register monitoring Oven usage
has been above a certain value for a certain time. More examples are available here.

Configuring the Alert Service Provider
Choose the View/Edit Gateway & Alert Destinations button from the top of the Alerts page to
configure how alerts are sent. The page will request credentials in order to make changes if none
have been previously cached.

SMTP Gateway

The SMTP Gateway Alert Service Provider allows the eGauge to send alerts directly to email
addresses, SMS-enabled phones, or a mixture of the two. This functionality requires an internet
connection, but does not require the eGauge to be connected to the proxy server at d.egauge.net.
The following fields are required:

Hostname of mail server

Normally, eGauge attempts to deliver email directly to the destination address. Similarly, it
attempts to deliver SMS directly to an SMS-gateway. However, if a firewall prevents the device
from directly establishing such connections, as is commonly the case for consumer-grade Internet-
service, you will have to set the value of this setting to the hostname of a mail server which can
forward the messages to the final destination. The mail server may either be a host on the same
LAN (e.g., within a company or school network) that will accept email delivery without
authentication or it may be am external mail server where you have a valid user account. By
specifying the username and password for that account, the device is then able to deliver email
through that mail server (ie, the alert messages from the eGauge will originate from your
username on that mail server). As an example, if you have a Gmail account, you can set the
hostname to smtp.gmail.com. By specifying your Google account’s username and password, you
can then have alerts delivered via Gmail.

Username for mail server

When non-empty, this setting specifies the username the device uses to authenticate itself to the
mail server. If empty, mail is delivered without authentication or encryption. Note that this option is
required for almost all mail servers.

Password for mail server

This setting specifies the password the device uses to authenticate itself to the mail server. It is
used only if Username is not empty.

Legacy meters (eGauge2 and EG30xx series) support TLS 1.1, while newer meters (such as
EG4xxx) support TLS 1.2.

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598029453892.png

Using SendGrid

SendGrid credentials are entered in the SMTP Alert Service Provider fields. For more information on
using SendGrid or a similar service, please refer to this article.

Setting Alert Destinations

Message Format: select the appropriate SMS carrier or email format.
Email address or phone number: enter the appropriate destination for the alert.
Min. Alert Prio (Minimum Alert Priority): minimum level of alerts this destination should receive (see
below).

Up to four alert-destinations can be defined. Alerts are prioritized. For each alert-destination, a
minimum priority can be defined. Only alerts whose priority is equal to or greater than the
minimum priority are reported to an alert-destination. Once an alert-destination has been notified,
only alerts of higher priority result in a new notification to that destination until the alert has been
acknowledged or deleted via the alerts page, or after 24 hours have passed.

eGuard Alert Service

Caution: on legacy meters (eGauge2 and EG30xx series) the password is transmitted to the
eGauge over an unencrypted channel. Only change this password from a computer that’s
connected to the same LAN as the eGauge and only after clicking on the LAN Access link on
the eGauge main page. As an added security measure, create a dedicate email account at
the mail server for sending eGauge alerts.

Compatibility Notice: Beginning in June 2023, only EG4xxx will be compatible with the
SendGrid SMTP gateway. Legacy meters such as EG30xx and eGauge2 will fail to send alerts
via the SendGrid SMTP gateway.

Legacy meters (eGauge2 and EG30xx) require HTTPS certificate validation to be

disabled to activate the eGuard Alert Service. This is due to a bug with an older SSL library

https://kb.egauge.net/books/advanced-egauge-operation/page/alerts-and-email-gateway-with-sendgrid
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598030888514.png
https://kb.egauge.net/link/369#bkmrk-disabling-certificat
https://kb.egauge.net/link/369#bkmrk-disabling-certificat

The eGuard alert service provides an alternative to configuring the eGauge with SMTP credentials.
This is especially useful for users with a large number of devices. The meter must be in an eGuard
group controlled by the user. More information on eGuard is available here. Also note that eGuard
features built-in alerts - those are covered in this article.

To use the eGuard Alert Service, simply select "eGuard Alert Service" and click the "Activate"
button. A new window will open, and you will be prompted to log in to eGuard. Once logged in (or if
you are already logged in), eGuard will confirm you want to register this device for alerts. Click
"Register for Alerts" to confirm.

Minimum priority to report: Setting this to a value other than zero will omit any alerts with a
priority set lower than that value. This can be useful when certain alerts are not required (eg, set
all system alerts to zero, set minimum priority to report to 1, then set all user-defined alerts to 1).

Custom Alert Destinations

Custom alerts may be utilized by advanced users to send JSON-formatted data as a POST to a user-
provided URI (alert destination).

Alert Provider: Must be set to "custom".

used on legacy meters and the eGauge.net certificate provider. This should only be used if
the alert information being sent is not sensitive.

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598030496087.png
https://kb.egauge.net/books/eguard-porfolio-manager/page/eguard-overview
https://kb.egauge.net/books/eguard-porfolio-manager/page/eguard-alerts
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598030729373.png
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598031072095.png

URI: The URI to send the JSON POST to. Should be unique to the device, such as with a GET token
to uniquely identify the device making the POST.

Options: A comma separated list of options available below:

deflate: Use "deflate" content-encoding when posting alerts.
gzip: Use "gzip" content-encoding when posting alerts.
secure: For HTTPS connections, fail if the alert provider server's certificate cannot be
verified as being valid.

Minimum priority to report: All alerts with a priority level equal to or greater than this will be
POSTed to the URI when triggered. To prevent some or all system alerts from being reported, this
may be set to "1" or greater. When alerts below the minimum priority level are triggered, they are
only logged on the device locally and do not create a POST.

Configuring Alerts
Alerts are reported with a delay of approximately 30 seconds and are automatically acknowledged
24 hours after reporting them. These rules ensure you will be promptly informed of any alert
conditions for a device without a deluge of SMS or email messages. Alerts of higher priority are
reported even if there are pending alerts of a lower priority.

There are two types of alerts: System alerts and User-defined alerts

System Alerts
System alerts are predefined but you can choose the priority with which they are reported. This
allows control over which recipients receives which system alerts (if any) and which alerts are more
important. To set an alert priority, use the dropdowns in the "Prio" column. If there are certain
system-alerts that you do not wish to have reported at all, select priority 0 and ensure that all alert
destinations have a minimum alert priority of at least 1. Note that alerts with a priority of 0 will still
be logged on the Alerts page, but no notifications will be sent for those alerts if all alert destination
priorities are higher than 1.

Do not use multiple compression schema, i.e., do not use gzip AND deflate on the same
device.

An example of the JSON post contents is available here.

Proxy-connection established/lost: tracks when a connection to the proxy server at d.egauge.net is
opened or closed. If this occurs frequently it can indicate an unstable network connection.

Device-configuration changed: reports when a device’s configuration is changed, and which
account has made the modification.

Date and/or Time changed: reports when the device date or time is changed (either by the user or
automatically).

Device running hot: reports if the eGauge’s internal temperature reaches a significantly high
temperature.

Device temperature OK: reports when the eGauge’s temperature returns to a safe level.

Remote-device connected: tracks when a connection is established to a remote device (including
Modbus devices and remote eGauges).

Remote-device lost: tracks when a connection to a remote device is lost (including Modbus devices
and remote eGauges).

Failed to push data: reports if a data push is set, and the eGauge is unable to successfully push
data.

Device up and running/Device rebooted by firmware: tracks when the meter is rebooted, and when
the meter comes back online from a reboot or power outage.

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598035794750.png

Network interface changed: tracks when the meter switches from an Ethernet (ETH) to HomePlug
(PLC) connection. This may happen immediately after a reboot and can generally be ignored.

Database error: typically reports when the device configuration is changed. The occasional
database error is considered normal, but if this alert triggers multiple times per day and no
configuration changes are being made it may indicate an issue. If this happens, contact eGauge
support at support@egauge.net.

Web server down/Web server up: reports when the eGauge's internal webserver stops and starts.
This will generally happen as the result of a reboot, and may happen as a normal occurrence
during regular operation (for example, watchdog resets). If this alert triggers multiple times per day
for several days it may indicate an issue.

Remote device fault/Remote device fault cleared: reports when Sunspec fault codes trigger on a
remote Modbus device, and when those fault codes are cleared.

Failed to connect to server: reports when certain outbound connections fail, typically alert POSTs
when using a custom alert destination.

User Defined Alerts
User-defined alert patterns allow the flexible detection and reporting of various conditions. For
example, an alert could be defined which, on a second-by-second basis, checks whether a register
value is outside of its permitted range (e.g., whether a voltage or frequency is above or below a
certain threshold).

The alert fields are described below:

Name: The name of the alert. This should be short but informative enough to convey the nature of
the alert.

Trigger Condition: The trigger condition consists of three parts: left-hand-side (lhs), comparison
operator, and right-hand-side (rhs). The comparison operator may be one of less-than (<), less-or-
equal (<=), equal (=), not-equal (!=), greater-orequal (>=), or greater-than (>). The lhs is
compared to the rhs based on this operator and, if true, the alert is triggered.

Chk Freq (Check Frequency): select the frequency with which the trigger condition is to be
checked. eGauge evaluates all alert conditions whenever the device starts up and hence may

mailto:support@egauge.net
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598041425850.png

evaluate the conditions more frequently than requested. Apart from the first time a condition is
checked on start up, hourly conditions are evaluated during the first minute of each hour, daily
conditions during the first hour after midnight, weekly conditions during the first hour of Sunday,
monthly conditions during the first hour of the first day of the month, and annual conditions during
the first hour of the first day of the year. “Every second” conditions are evaluated each second,
“Every minute” conditions once a minute.

Msg (Message): use this field to define a custom-message to be displayed along with the alert
name. If left empty, a default message is included which shows the value of the lhs, the operator,
and the rhs of the trigger-condition. A well-written message will explain the alert - for example, on
a "Low Production" alert the message might be "Caution: Low production on Inverter 1 (north
side)". The placeholders %l and %r can be used in the message field to include the calculated
value for the lhs and rhs of the equation.

Viewing and Acknowledging Alerts
You can view and acknowledge alerts on your device under View → Alerts. By default, a list of
triggered alerts will be visible. For more information on each alert and the option to acknowledge
or delete an alert, click the "View Privileged Details" button.

Choose the lowest check frequency possible as evaluating too many conditions too often
may slow down the device. If a slow-running condition (eg, a condition using the peak_risk()

function) is evaluated, evaluation of other conditions may be delayed until the evaluation of
that condition is completed.

Examples of user-defined alerts are available in the User-defined Alert Examples section
near the end of this document. Click here to jump to that section.

Ack (Acknowledged): indicates if this alert has been acknowledged. Once acknowledged, the
alert will be reported again should it reoccur and its priority is sufficiently high. Alerts are
automatically acknowledged after 24 hours. To ensure new alerts are reported, alerts should be
acknowledged when they are received.

Prio (Priority): the priority of the corresponding alert.

Time: date and time of the most recent occurrence of the alert.

#: number of times this alert has occurred (note that this isn't necessarily the number of times the
alert has occurred since the device was installed).

Name: name of the alert.

Last Reported: date and time when the alert was last reported to at least one of the alert-
destinations.

To view detailed alert information as well as acknowledge and delete reported alerts, click the
"View Privileged Details" button. Valid credentials are required to see this information and
acknowledge/delete alerts.

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598384378068.png

The Detail column contains additional information about each alert. For example, one instance of
the "Network interface changed" alert provides the additional detail that the network interface was
changed from "none" to "eth0" (this happens immediately after a reboot) while the other (newer)
instance of the "Network interface changed" alert provides the additional detail that the network
interface changed from eth0 to qca0. This happened very quickly (within the same minute), and is
normal behavior for a meter coming back online after a reboot.

To modify alerts, check off any alerts you wish to delete or acknowledge, and click the appropriate
button. Deleting alerts here
will remove them from the reported alert page until it occurs again.

User-defined Alert Examples

General Notes
$"REG NAME" returns the instantaneous value of the register REG NAME, while "REG NAME" points a
function at a specific register (but doesn't necessarily return the register's value). When using
functions such as avg() or others listed in the function documentation, do not include the dollar
sign.

When creating a message (Msg), there are several shortcuts which can be used to include values
from the alert condition itself:

For available functions on your particular firmware version, visit http://DEVNAME
/fundoc.html?alert where DEVNAME is your eGauge device name.

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598384643646.png
https://kb.egauge.net/books/general/page/where-can-i-find-my-device-name

%l will return the value of the left–hand–side
%L will return the formula of the left–hand–side
%r will return the value of the right–hand–side
%R will return the formula of the right–hand–side
%% will return a single percent sign (eg, %l %% would read as <value from left side of the
comparison> %)

Basic Examples
In the following example, "Grid Average" will return the daily average of the Grid register if that
value is less than or equal to 5000W, while "Grid Instantaneous Usage" will return the
instantaneous reading of the Grid register if that value is less than or equal to 1000W.

The next example will trigger if the value of the L1 voltage register is greater than or equal to 130V
(which could indicate a dangerous condition for devices connected to that service).

More complex math can also be performed on either side of the alert expression. For example, the
following alert obtains the average voltage from two references, and triggers if that value is
greater than or equal to 130V.

It's also possible to calculate cumulative values (kWh) over a period and trigger an alert based on
those values. In the following example, let's assume an outdoor hot tub has a 6kW pump/heater,
which cycles every 3 hours for 30 minutes at a time. Thus, every 6 hours there should be 6 kWh of
energy used. Any less could indicate a pump or heater failure, and the hot tub could freeze.

(avg("Hot Tub Pump/Heat",360)*6) / 1000 will take the average power (W) read on the register Hot Tub
Pump/Heat over the last 360 minutes (60 minutes in an hour, 6 hours). Then, the average power is

https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598385221466.png
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598388200742.png
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598388449822.png

multiplied by 6 hours to get Wh, the total energy used over the 6 hour period. Finally, we divide by
1000 to convert Wh to kWh.

That value is then compared to the value on the right-hand-side, in this case 6. If the alert is
triggered the alert will be sent.

Ternary operator
The syntax of the “?” ternary operator (also referred to as a conditional or conditional test) is
condition?value_if_true:value_if_false and can be nested. This is a fundamental component of many
alerts, especially more complex alerts.

Boolean expressions
Simple boolean expressions may be used within an alert:

(5 > 4) will return 1. Conversely, (5 < 4) will return 0.

The boolean value can be multiplied by another value (including a register value). For example,
($"Grid" < 7000) * $"Grid" returns the value of “Grid” if “Grid” is greater than 7000 W, and returns 0 if
the value of "Grid" is less than 7000W.

To break this down: if $"Grid" < 7000 is true, it will return a 1. 1 * $"Grid" returns the value for the
"Grid" register. If $"Grid" < 7000 is false, it will return a 0. 0 * $"Grid" is 0. Remember, $"REGNAME"
returns the instantaneous value of the register.

Let's look at how the time() function can be used with the ternary operator and boolean
expressions to trigger an alert at a specific time:

These two alerts work together to trigger if the Grid value is greater than 5000W during daytime
hours and greater than 3000 during nighttime hours.

https://kb.egauge.net/uploads/images/gallery/2022-03/image-1646775756987.png
https://kb.egauge.net/uploads/images/gallery/2020-08/image-1598387960751.png

time() returns the current time as a number from 0 up to (but not including) 24 with minutes as a
fractional value. For example, 11:30am would be 11.5. We use two booleans here:

time() > 8 * time() < 18

If the time is > 8 (8am) and less than 18 (6pm), the booleans work out to 1 * 1 or 1.

If either boolean is false, the output from the booleans is 0. 0 * 1 or 1 * 0 both equal 0.

This gives us a ternary expression of either 1 ? $"Grid" : 0 or 0 ? $"Grid" : 0 (remember ternary
expressions work out as condition?value_if_true:value_if_false). Thus, if the booleans evaluate to 1, the
left side of the formula returns the value of $"Grid". If the booleans evaluate to 0, the left side of
the formula returns 0.

Moving on to the alert expression: if the booleans work out to zero (ie, if the time range is not
correct), the left side of the alert returns 0. This can never be greater than 5000, so the alert never
triggers. If the booleans work out to 1, the left side of the alert returns the value of the "Grid"
register. If the value of the "Grid" register is >= 5000, the alert triggers.

Example and description of POST
data

{
 "now": "1568419537.35",
 "alerts": [
 {
 "id": 1804290019,
 "priority": 7,
 "occurrences": 12,
 "first_occurence": 4462.5,
 "last_occurence": 389.31,
 "name": "Device-configuration changed",
 "detail": "By owner."
 },
 {
 "id": 1804290035,

Generic
"now" is a 64-bit UNIX timestamp, possibly with a fractional (sub-second) part, formatted
as a decimal integer string.
"alerts" is a list of reported alerts:

"id" is a number that uniquely identifies an alert. It is used, for example, to
acknowledge or clear an alert.
"priority" is the user-assigned priority level of the alert (0 being the lowest priority
and 7 the highest priority).
"occurrences" gives a count of how many times the alert has occurred since it was
last cleared.
"first_occurence" and "last_occurence" specify how many seconds ago the alert
occurred for the first time and the last time, respectively, relative to "now". That is,
the specified number should be subtracted from "now" to get the absolute UNIX
timestamp of when the alert occurred first and last, respectively.
"name" is the name of the alert that occurred.
"detail" provides additional detail on the alert that occurred.

 "priority": 0,
 "occurrences": 1,
 "first_occurence": 0,
 "last_occurence": 0,
 "name": "Device rebooted by firmware",
 "detail": "Howdy do?"
 }
]
}

Zero out data/spikes tutorial
Devices on firmware older than version 3.01 may experience a phenomenon where register
configuration changes that require a reboot cause unusually high readings to appear in the minute
following the change. These readings are referred to as spikes, since they tend to "spike" far above
the actual device readings. Spikes are almost always at least 100x the expected reading, and may
be even higher.

Since spikes can cause cumulative readings to display incorrectly, the eGauge has a tool that can
permanently clear data from the device database. Extreme caution should be exercised when
using this tool. Once data is erased, it cannot be recovered. The video tutorial below provides a
walkthrough of the tool's functionality.

Note that this tool may be used in other situations where clearing data is necessary (for example,
removing bad data due to a configuration issue). However, this tool will always permanently
clear data when used.

https://www.youtube.com/embed/moh7krPBW58?wmode=opaque

https://www.egauge.net/revs/#3.01
https://www.youtube.com/embed/moh7krPBW58?wmode=opaque

eGauge language options
and adding new languages
The EG30xx and EG4xxx have support for different locales. The eGauge will use the language
associated with the locale that is requested by the user's browser. If the locale does not exist or is
not supported, it will default to English.

New locales and improvements upon existing ones are welcome. Please see our
internationalization (I18N) page at https://www.egauge.net/i18n/ for full details. This page also
shows the completion percentage of any supported language. Anyone is welcome to download and
improve upon the PO files and submit them to i18n-team@egauge.net for review and
implementation.

A specific locale can be forced to display in the browser by changing the browser's language/locale
setting. Check your browser's help menu for information on changing your its language settings.

https://www.egauge.net/i18n/
mailto:i18n-team@egauge.net

High Gain Mode
High-gain mode is available on the EG4xxx hardware only. To enable high-gain mode, navigate to
Settings -> Installation. Check the "Use high-gain mode" option just above the dropdown menus
for CT selection.

Image not found or type unknown

High-gain mode selection box

High-gain mode amplifies the incoming signal from all CTs by a factor of ten. From a practical
standpoint, this means a CT with a higher amperage rating can be used to accurately measure
much lower amperages. For example, with high-gain mode enabled a 100A CT could be used in
place of a 10A CT.

High-gain mode does not require any changes to standard installation or wiring procedure. When
high-gain mode is enabled, the CT amperages displayed in the drop down menus will decrease by a
factor of ten (for example, an 800A CT will be listed as an 80A CT). For the simplest configuration, it
is recommended to set actual CT amperages first and then enable high-gain mode. Note that high-
gain mode is a global setting - when enabled, it applies to all configured CTs. As with most other
installation settings, enabling high-gain mode will only impact data recorded from that point
moving forward.

Connecting via the eGauge
proxy server using IE 10/11
Users with Internet Explorer 10 and 11 may require some additional steps to function properly with
the eGauge proxy server. These steps are covered in the document below.

Image not found or type unknown

IE 10/11 PROXY SETTINGS

https://www.egauge.net/media/support/docs/egauge-tutorial-article-7-IE10-11.pdf
https://www.egauge.net/media/support/docs/egauge-tutorial-article-7-IE10-11.pdf

Monitoring High Voltage
Systems

Monitoring High Voltage Systems
First, a disclaimer: although it's technically possible to monitor a high voltage system (greater than
480Vac phase to phase or 277Vac phase to neutral, or 600Vac phase to phase using EV1000
sensors), eGauge Systems doesn't officially support this and doesn't offer hardware capable of
doing so directly. eGauge support can assist with eGauge configuration, but cannot offer any
guarantees regarding accuracy. Note that a wiring mixup during installation can damage or destroy
the eGauge - this damage is not covered under warranty.

In order to calculate real power, the eGauge meter needs two measurements - a voltage reference
and an amperage reference (technically the meter also captures amperage and voltage
waveforms, which lets the meter calculate power factor and thus real power).

Voltage Reference

In most installations, the eGauge can tap directly into the line voltage at the site (up to 277Vac Ph-
N). Connecting the eGauge directly to higher voltages will damage or destroy the meter. However,
it is possible to use stepdown transformers to reduce higher voltages to something the eGauge can
safely read. These stepdown transformers are referred to as Potential Transformers (PTs) or
Instrument Transformers. Most will take a common service voltage (eg, 480V, 600V, 4160V) and

Warning: Systems greater than 600V phase-to-phase are not fully supported by eGauge
Systems. Supported CTs are rated for up to 600Vac, systems at higher voltages will need to
source alternate CTs.

Amperage-output CTs (e.g., 5A output, or 100:5 ratio, etc) can cause serious shock or
electrocution. Use appropriate protection when installing and handling equipment.
Amperage-output CTs must not be connected directly to the eGauge meter and
may cause damage.

eGauge Systems cannot guarantee meter accuracy when third party potential transformers
are used. It is recommended to use the EV1000 high voltage sensor when measuring a
system with higher voltage than the eGauge meter rating, or on a different side of a
transformer from where the eGauge voltage taps are connected.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/egauge-high-voltage-sensor-ev1000

reduce it to 120Vac.

With the release of the EV1000 High Voltage Sensor, it's now possible to monitor high voltage
services without the use of bulky stepdown transformers. The EV1000 can be used to measure up
to 707Vac, making it ideal for 600V services. Note that the EV1000 is only supported on EG4xxx
and newer meters - the EV1000 cannot be used with EG30xx and older meters.

Amperage Reference
To obtain an amperage measurement, the eGauge uses Current Transformers (CTs) with a 333mV
output. These CTs clamp directly around conductors, and as such are rated for the voltage used by
those conductors (a 600V rating is typically adequate for most installation scenarios). 333mV
output CTs are the only CTs which can be connected directly to the eGauge. Connecting any other
CT output type (eg, 4-20mA, 5A) will damage or destroy the meter.

Necessary Hardware
eGauge Systems currently stocks and supports one PT (Functional Devices TR50VA008, 480V to
120V) and several CT lines rated for use on up to 600V services. The EV1000 High Voltage Sensor
can be used on measurements up to 707Vac (for example, the phase to neutral voltage on a
347/600V service is 347V, so the EV1000 would work well here). For a service at a higher voltage,
the customer will need to identify and purchase:

1. Potential Transformers or Instrument Transformers which can take a higher voltage down to
<277V (preferably 120V). The transformer should have a relatively low VA rating to minimize phase
shift (we suggest <=50VA, although up to 100VA is acceptable). Stepdown transformers intended
for high accuracy measurements are generally referred to as Instrument Transformers. The
transformer may require a larger enclosure or additional mounting hardware as well - they tend to
be bulky and heavy. The total number of conductors on a service will determine the number of
transformers required. A three phase four wire (wye, with neutral) service needs three
transformers; a three phase three wire (delta, no neutral) needs two transformers.

2. A CT which can be installed around conductors carrying the service voltage (or overrated
depending on code and installation requirements). The CT should either have 333mV output or 5A
output (more on that below). Solid core CTs are recommended, although rope CTs are acceptable.

There aren't many (if any) 333mV output CTs rated for use on a 600V+ systems. The 5A output
profile is much more common. A 5A output CT cannot be connected directly to the eGauge.
However, it is possible to read from a 5A output CT using one of a supported CTs. Essentially, the
output from the 5A CT is shorted (wires connected together). One of the standard 333mV output
CTs is clipped around this new loop, and the eGauge measures the output current of the CT (0-5A).
A custom scale factor is used to for the eGauge to treat this as a reading from the larger CT. In a
similar manner, a custom scale factor is set on the line voltage readings to force the eGauge to
treat the 120Vac as the voltage on the primary side of the transformer.

https://kb.egauge.net/books/egauge-hardware-product-pages/page/egauge-high-voltage-sensor-ev1000
https://store.egauge.net/step_down_transformer
https://store.egauge.net/sensors/voltage-sensors

eGauge support can assist with this part of the device configuration, but cannot offer specific CT or
transformer suggestions.

Summary
It is technically possible to measure power used/generated on services over 600Vac (phase to
phase), although not officially supported. The customer will need to find suitable hardware (CTs
and PTs). eGauge support can offer advice on the suitability of a given piece of hardware but
cannot provide specific hardware recommendations. eGauge support can also assist with
configuration and testing, although it's not possible to guarantee any specific level of accuracy.

Formula registers and
remote devices
Physical registers represent any single data point recorded by an eGauge meter. These can
come from locally-obtained raw measurements (eg, amperage or voltage), locally obtained
calculations (eg, real power and other power register subtypes), and even registers imported from
remote devices (remote eGauge or third party devices connected via Modbus TCP/RTU).

Formula registers are a type of physical register which can be used for a variety of calculations.
Typically, a formula register will read data from one or more physical registers on a device, perform
some calculation, and then store a new value. This is commonly used for advanced calculations
such as power factor or reactive power.

However, when using a formula register with a remote register, some additional consideration must
be taken to avoid incorrect values when the remote register is not available (eg, the remote device
has been disconnected from the network, dropped offline, etc). When this happens, the remote
register may return a "NaN" value (Not a Number) instead of a numerical value, which can "break"
the formula register. Consider the simple example below:

In this example, a formula register is used to add together the physical registers "Local_Power" and
"Remote_Power". "Local_Power" is a power register measured by the meter itself, while
"Remote_Power" is a power register imported via Modbus from an external source.

Normally, this is simple addition: if "Local_Power" = 10 and "Remote_Power" = 20, the value of
"Remote and Local Power" would be 30. However, if the remote device which provides a value for
"Remote_Power" goes offline, the eGauge is now reading 10 + NaN, which returns NaN. This
behavior isn't desirable - it would be much better to at least return the value of "Local_Power" (10).

To achieve this, we can use a conditional and a function to convert any returned "NaN" into a 0.

A conditional is expressed as X?Y:Z, where X is something that evaluates to True or False, Y is the
value returned if X is true, and Z is the value returned if X is false. For example, (3=4)?0:1 would
return 1, because 3=4 is false (3 does not equal 4).

The function isnan() takes one value in the parenthesis and returns a "True" if the value is NaN
and "False" if the value is a number. For example, isnan(1) would return "False", because 1 is not a
NaN. isnan(sqrt(-1)) would return "True", because sqrt(-1) (square root of -1) isn't a number (and is

https://kb.egauge.net/books/egauge-meter-configuration/page/amperage-registers
https://kb.egauge.net/books/egauge-meter-configuration/page/voltage-registers
https://kb.egauge.net/books/egauge-meter-configuration/page/power-register-subtypes
https://kb.egauge.net/books/egauge-meter-communication/page/configuring-a-remote-egauge
https://kb.egauge.net/books/egauge-meter-communication/page/custom-modbus-definitions-%28read-from-any-modbus-device%29
https://kb.egauge.net/books/egauge-meter-configuration/page/power-factor
https://kb.egauge.net/books/egauge-meter-configuration/page/reactive-power-%28kvar%29
https://kb.egauge.net/uploads/images/gallery/2020-03/image-1584633859943.png

therefore NaN).

As you can see, isnan() will return either a "True" or "False". We can feed that into our conditional
and dictate which value is returned. The basic form for this is:

isnan($"registername")?0:$"registername"

If the value of the register "registername" is a NaN, isnan() returns "True" and the conditional
returns 0. If the value of the register "registername" is not a NaN, isnan() returns "False" and the
conditional returns the value of "registername".

Using our original example:

https://kb.egauge.net/uploads/images/gallery/2020-03/image-1584635636515.png

Register ID and location
The eGauge uses "registers" to record data. Each register is an independent data point. For
example, one register may be recording the voltage of L1, and another register can be recording
the power of CT1*L1. Data is only recorded and stored if a register is configured to record it.

Each register has an ID which can be found in the Settings -> Installation page by hovering the
mouse over the [x] delete button to the right of the register name:

This shows register "Oven" is recording in ID #4.

If there are multiple power sub-types selected, multiple IDs will appear in order:

Grid is recording net power (=), positive-only (+) and apparent power (*). They are recording in ID
#0, #7, and #8 respectively.

Adding a new register will use the first available unused ID, so if register ID #0 is removed and a
new register is added, the new register will record in ID #0. Historical data is not erased when a
register is removed, so historical data from ID #0 will always show in ID #0 even if the register is
deleted and a new register records data in it.

To permanently erase data from a register, you can use the Zero-out data tool in the Tools menu.

https://kb.egauge.net/uploads/images/gallery/2020-06/register-id-mouse.png
https://kb.egauge.net/uploads/images/gallery/2020-06/register-id-multiple-mouse.png

Working With Max Demand
Export Data
Overview
As of firmware version 3.1.10, the eGauge supports rolling max demand exports through the CSV
export function built into the main graph page. These exports contain a rolling average over the
past X minutes with a data point presented at the interval requested when creating the export.

Many utilities bill based on rolling max demand averages in additional to total kWh consumption.
While it's possible to obtain a rolling max demand average using minute-granular data from a
meter, the process is involved and the data overhead is quite large (data for every minute over the
period must be downloaded, then the user must calculate a set of rolling averages for each
interval, and record the maximum average for an interval). For example, a rolling max demand
export over the past 30 days would return 2880 data points (one point every fifteen minutes), while
a minute-granular export for the same period would contain 43200 data points (one point every
minute).

eGauge Systems cannot assist with utility reconciliation or questions about the billing process used
by a specific utility. You'll need to reach out to your utility for assistance with this.

Verifying Settings
The max demand export calculates a rolling average which is X minutes long. X is defined by the
value selected for "Length of a demand interval" under Settings -> Preferences.

This value can be adjusted in one minute increments, from 15 to 60 minutes. Your utility should
make their demand interval public (although it may be necessary to contact the utility directly to
get this information). eGauge Systems cannot advise as to the correct value to select for this
option.

https://www.egauge.net/revs/#3.1.10
https://kb.egauge.net/books/general/page/how-do-i-export-data-to-a-spreadsheet
https://kb.egauge.net/books/general/page/how-do-i-export-data-to-a-spreadsheet
https://kb.egauge.net/uploads/images/gallery/2021-02/Screenshot-from-2021-02-05-11-56-11.png

Performing An Export
To perform a max demand export, use the dropdown menu in the top left corner of the main graph
page. The export window should look something like the following image. Note that the export type
is set to "Max. Demand Value" and the interval is set to 15 minutes.

The export interval setting is not the same as the length of a demand interval setting. The
former determines how often a data point is returned (eg, one data point for every 15 minute
period) while the latter determines the length of the demand interval (eg, how many data points
are included when calculating an average).

In other words, a single data point in a max demand export can be described as "the average peak
demand over the past N minutes for the time period from XX:XX to YY:YY with a data point every Z
minutes", where N is the "Length of a demand interval" setting, XX:XX is the starting time of the
export, YY:YY is the ending time of the export, and Z is the export interval.

Example Data
In the example below, two data sets were obtained from the same meter. The first data set
(columns A and B) is a minute-granular average value export. The second data set (columns G and
H) is max demand data from the same period, with a 15 minute demand interval and a 15 minute
export interval.

https://kb.egauge.net/uploads/images/gallery/2021-02/image-1612551572235.png

Column E contains a rolling 15 minute average calculated from the minute granular data in column
B (the "Length of a demand interval" value). The blue outlines represent 15 minute intervals (the
export interval value).

The colored values in column E are the highest value peak) for each 15 minute interval (one per
blue box). They are color coded to tie to the same values in the max demand data (column H).
Note that these aren't perfect matches - the process used by the eGauge is slightly different, so
there will be small differences due to rounding and granularity.

https://kb.egauge.net/uploads/images/gallery/2021-02/image-1612552478667.png

Monetary registers
Overview
By default, the eGauge applies a flat rate cost per kWh used or generated to the summary areas at
the top of the main graph page. In the example below, the site has used 24.7 kWh at a cost of $.13
per kWh, for a grand total of $3.21 of usage (values are rounded to the nearest cent).

For Usage, the value entered in the "Average cost of 1kWh of electricity" under Settings ->
Preferences is multiplied by the value of the "Usage" totaling register. For Generation, the value
entered in the "Average REC-payment per kWh generated value is added to the "Average cost of
1kWh of electricity" value, and then multiplied by the value of the "Generation" totaling register.

This approach does not work for tiered billing systems (ie, any billing system where the cost per
kWh varies in response to the date, time, or month). However, it is possible to create monetary
registers to accommodate these billing systems. Generally, one monetary register is required for
Usage and one for Generation.

Creating a monetary register
Monetary registers are a special type of formula register. Formula registers are physical registers
(that is, they occupy one register slot in the eGauge database) and are specified using the register
type "=". A monetary register uses the unit type "Monetary [${currency}/s]". The register also
features a formula field (empty in the example below).

https://kb.egauge.net/uploads/images/gallery/2021-06/image-1623863112295.png
https://kb.egauge.net/uploads/images/gallery/2021-06/image-1623862970601.png
https://kb.egauge.net/uploads/images/gallery/2021-06/image-1623863388976.png

Creating a monetary register formula

At the most basic level, a monetary register multiplies the value of an arbitrary power register or
set of power registers against one or more cost per kWh values. The monetary register is
expressed in terms of currency units per second (eg, dollars, pounds, euros, etc). To convert from
currency per kWh to currency per second, the final step of any monetary register calculation is to
divide by 3.6e6 (or 3600000). Here's a basic example:

($"Grid"*.25)/3.6e6

This example would effectively be the same thing as setting the "Average cost of 1kWh of
electricity" to .25, except you can use any arbitrary register in the calculation (meaning you're not
limited to using the Usage totaling register). For example, you could add two registers together:

(($"Subpanel1"+$"Subpanel2")*.25)/3.6e6

or multiply by some additional value:

(($"Grid"*2)*.25)/3.6e6

Monetary register formulas can also utilize some of the built-in eGauge functions (specifically
time(), wday(), mday(), and month()) for tiered billing structures. For more information on these
functions, refer to the function documentation on your specific meter by appending /fundoc.html?
to the end of your meter URL (for example, DEVNAME.d.egauge.net/fundoc.html? where DEVNAME
is the device name of your meter).

Basic Examples
Let's start with a basic example - tiered billing with a higher peak rate between 5pm and 9pm.

As with all physical registers, a monetary register will only record values from the time it is
created moving forward.

It's strongly recommended to use a plain text editor (notepad, nano, vim, etc). Other
software may add formatting characters which can cause issues.

Available functions will vary from meter to meter depending on meter firmware version. It
may be necessary to update meter firmware to get access to certain functions.
On meters connecting to eGauge.io this information will be available at:
DEVNAME.egauge.io/fundoc.html

https://kb.egauge.net/books/general/page/where-can-i-find-my-device-name
https://kb.egauge.net/books/egauge-meter-ui/page/checking-and-upgrading-firmware

Standard 12am to 5pm; 9pm to 12am - $.15 / kWh
Peak 5pm to 9pm - $.25 / kWh

The eGauge features a full variety of comparison operators (=, <, >, <=, >=), so we'll use those
along with the time() function.

A comparison operator will return a 1 if true, or a 0 if false. Thus, we can use the following to test
for the time range between 5pm and 9pm:

(time()>17)*(time<21)

If both conditions are met, the result is 1*1. If either condition is false, the result is 0*1 or 1*0 (0
either way).

Next, we'll use a conditional to return a value based on the time comparisons (expressed as C ? T :
F where C is the condition, T is the value returned if true, and F is the value returned if false).

((time()>17)*(time<21) ? ($"Grid"*.25) : ($"Grid"*.15))/3.6e6

This is the complete formula - we'll get the value of the "Grid" register multiplied by .25 and
divided by 3.6e6 if the time is between 5pm and 9pm, and the value of the "Grid" register
multiplied by .15 and divided by 3.6e6 if the time is outside of that range.

Intermediate Example
Moving on to a more complex example - it's possible to nest conditionals to perform more complex
comparisons. Here's an example using time of day and day of week:

Peak - 5pm-9pm M-F $.25
Peak Weekend - 4pm-10pm S-S $.32
Off Peak - 12am - 5pm; 9pm-12am M-F $.15
Off Peak Weekend - 12am-4pm; 10pm-12am S-S $.18

((wday()<=4) ? ((time()>17)*(time<21) ? ($"Grid"*.25) : ($"Grid"*.15)) : ((time()>16)*(time<22) ? ($"Grid"*.32) :
($"Grid"*.18)))/3.6e6

Here, we've created a conditional which uses a comparison to see if wday()<=4 (corresponding to
a weekday). If it is a weekday, the first nested conditional runs to check the time and return a

The time() function is based on the time zone set under Settings -> Date & Time

Spaces in the formula are optional, and are ignored. In the examples below, spaces are used
to improve readability.

value based on the time; if it's a weekend, the second conditional runs a different time check and
returns a different value based on the time. Finally, we divide by 3.6e6 at the end, which is always
required.

The following flowchart may better illustrate the logic behind this formula:

Advanced Example
Building off of the previous example, let's say the utility also has an additional per-kWh charge
from November thru May, and an additional flat daily rate:

Peak - 5pm-9pm M-F $.25
Peak Weekend - 4pm-10pm S-S $.32
Off Peak - 12am - 5pm; 9pm-12am M-F $.15
Off Peak Weekend - 12am-4pm; 10pm-12am S-S $.18
Winter Peak Charge - Nov-May, $.08 per kWh
Daily surcharge of $1.23

((((month()<10)*(month()>4)) ? ((wday()<=4) ? ((time()>17)*(time<21) ? ($"Grid"*.25) : ($"Grid"*.15)) :
((time()>16)*(time<22) ? ($"Grid"*.32) : ($"Grid"*.18))) : ((wday()<=4) ? ((time()>17)*(time<21) ? ($"Grid"*.33) :
($"Grid"*.23)) : ((time()>16)*(time<22) ? ($"Grid"*.40) : ($"Grid"*.26))))+(1.23/86400))/3.6e6

We're building off of the previous formula in this example. We've used another conditional to test
for the month of the year - if the month is > 4 (ie, June 1) or < 10 (ie, Nov 1) the meter uses the
original formula in the Intermediate Example. If the month isn't within that range, the meter uses a
modified version of the formula in the Intermediate Example (with rates adjusted upward by $.08
per kWh).

Formula registers have a finite length, meaning that extremely intricate billing schemes may
not be supportable.

https://kb.egauge.net/uploads/images/gallery/2021-06/image-1623866302534.png

Once a cost per kWh value is calculated, we take the calculated value multiplied by the actual
register measurement and add 1.23/86400. We have a daily charge of $1.23, but the monetary
value register expects dollars per second, not dollars per day. To convert $/s to $/d, we can divide
by the number of seconds in a day (86400).

The following flowchart may better illustrate the logic behind this formula:

Using the monetary register
Once a monetary register has been created and saved, navigate back to Settings -> Preferences
. Scroll down to "Money used register" or "Money earned register" (based on whether the monetary
register is used for consumption or generation billing) and select the appropriate register from the
dropdown menu.

Make sure to click "Save" at the bottom of the page to apply these changes.

It's also possible to view the cumulative total (ie, cost) recorded by a monetary register by
displaying that register in the Mobile-Friendly Dashboard UI. To do this, create a new "Summary
Table" dashlet (or add a new register to an existing dashlet). Leave the Type as "Register value",
name the dashlet as desired, select the monetary register in the "Register to display" field, and
leave the unit as "auto". It may be necessary to flip the polarity of the reading to get a positive
dollar value (using the "Flip sign of the value" option). This should result in something similar to the
following:

https://kb.egauge.net/uploads/images/gallery/2021-06/image-1624394505672.png
https://kb.egauge.net/uploads/images/gallery/2021-06/image-1623866640275.png
https://kb.egauge.net/books/egauge-meter-ui/page/dashboard

https://kb.egauge.net/uploads/images/gallery/2022-04/image-1649168885469.png

Lua Scripting

Lua Scripting

Lua Scripting Overview

Introduction
Support for eGauge Script (eScript) was introduced in firmware v1.1, allowing limited scripting through the

use of formula registers. eScript was designed for calculating basic and common mathematical formulas

such basic arithmetic operations, comparisons, and conditionals, along with the ability to call library routines
(functions).

Firmware v4.1 introduced Lua v5.3 support. To ensure safe operation, Lua execution is guarded with

timeouts to protect against infinite loops or unacceptably long execution times. Additionally, a restricted set
of standard libraries is supported.

To maintain backwards compatibility, firmware transparently translates eScript expressions to Lua scripts
before execution and the Lua execution environment provides all the functions available within eScript.

Lua Primer

Lexical Conventions
Names may consist of any letters, digits, or underscores but may not start with a digit. Numeric values use
 the same conventions as in most other languages, including the ability to write hexadecimal values with a
prefix of 0x. The two boolean literal values are true and false. A variable with an undefined value is nil
. Strings may be enclosed in double or single quotes. Characters within a string may be escaped with a
backslash. Comments start with a double-dash (--) and extend to the end of the line. Statements may be
terminated with a semicolon but, generally, semicolons are not required (even when there are multiple
statements on a single line). The only exception to this rule is that a semicolon is required if the following
statement starts with a left parenthesis.

Variables
Variables are global unless explicitly declared as local. For example:

Operators

Lua scripting is an advanced topic. eGauge Support cannot review code and has limited
support for troubleshooting Lua scripts.

x = 10 -- global variable
local y = 42 -- local variable

https://kb.egauge.net/books/advanced-egauge-operation/page/formula-registers-and-remote-devices
https://www.lua.org/manual/5.3/

Lua provides a normal set of operators for arithmetic operations and comparisons. A bit unusual is that the
inequality operator is ~= rather than the more typical !=. Logical operators use keywords like in Python:

and, or, and not. The length of a string or a table (see Structured Data) is obtained by prefixing the string

or table name with a hash mark. #'hi' would return 2, for example. Strings can be concatenated with the
double-dot operator. 'yell'..'ow' would yield 'yellow', for example.

Control Structures
The syntax for the various control structures is:

You can use break to exit a loop but, unlike in C and other languages, there is no continue that would
allow you to skip to the next iteration.

Structured Data
Lua uses tables to represent both arrays and hash tables (Python dictionaries, Javascript objects). For
example:

assigns an array containing the strings 'a', 'b', and 'c' to local variable a. Unlike in most other
languages, the array base index is 1, so a[1] would yield the first element or 'a' in our example.

Dictionary literal values can be written like this:

for index=initial,step,final do block end -- numeric for loop

for var in iterator do block end -- iterator for loop

while cond do block end -- while loop

repeat block until cond -- do while loop

if cond then block else block end -- conditional statement

local a = {'a', 'b', 'c'}

https://docs.google.com/document/d/17NXpUaK4-43_vgHUIjUSDugHxkx9iGFTnqBTszToJ0c/edit#heading=h.5kbztt1c5hpd

and indexed with square brackets such that d['k2'] would yield 'v2', for example. If the keys for a
dictionary happen to be valid Lua names, the square brackets and quotes around the key strings can be
omitted. For example, the above example could be simplified to:

For such key values, it is also possible to access their values using member-name syntax. For example,
d.k1 would yield 'v1', just as d['k1'] would.

Migrating from eScript to Lua
Most of eScript has a direct equivalent in Lua. eScript has full support for a single numeric type (IEEE754
double precision float) and limited support for strings. As configured for the eGauge firmware, Lua has the
same numeric type but also supports 32-bit integers and has full support for strings, boolean values, and
tables.

The most important differences between eScript and Lua are as follows:

In eScript, the value of a register is obtained with $"register_name", whereas in Lua, the
equivalent expression is __r("register_name").

Lua boolean values cannot directly be used as numeric values, whereas eScript uses 0 to
represent false and any non-zero value for true.

Lua does not provide a direct analog for the conditional operator

Instead, Lua uses the logical expression

This works quite similarly to the eScript conditional because of the way the and and or operators are
defined. Specifically, and returns false if the left-hand side is nil or false or the right-hand
side's value otherwise. Operator or returns the value of the left-hand side if it is not nil or false
and the value of the right-hand side otherwise. Both operators short-circuit evaluation and operator
and has higher precedence than or.

local d = {['k1']='v1', ['k2']='v2'}

local d = {k1='v1', k2='v2'}

cond ? if_true_expr : if_false_expr

cond and if_true_expr or if_false_expr

eScript automatically propagates NaN (Not-a-Number) values. For example, if any function is
called with a NaN value, the returned result is also NaN. Similarly, if the condition of the
conditional operator is NaN, then the result of the conditional expression is also NaN.

Given the similarities between eScript and Lua, most eScript expressions trivially translate to Lua. The non-
trivial translations are shown in the table below:

eScript expression Lua equivalent

a < b __lt(a, b)

a <= b __le(a, b)

a > b __gt(a,b)

a >= b __ge(a,b)

a = b __eq(a,b)

c ? a : b (function(__c)
 if __c ~= __c then return __c end
 return __c~=0 and (a) or (b)
 end)(c)

In words, the comparison operators get translated to calls to helper functions __lt(), __le() and so on.
These helper functions check if either a or b is a NaN and return NaN, if so. If not, they perform the
comparison and return 0 for false and 1 for true. The translation of the conditional operator is more
complicated because care has to be taken to handle NaN properly and to evaluate a and b only when
necessary. This is accomplished in Lua with the help of an anonymous inline function which checks
whether the condition is NaN and returns NaN if that is the case. Otherwise, the function checks if the
condition has a non-zero value and, if so, returns the value of a. Otherwise, it returns the value of b.

Lua Environment provided by eGauge Firmware

Standard Environment
For safety reasons, the eGauge firmware provides a restricted Lua environment (the Lua sandbox). Basic

functions and variables are limited to the following subset (see Lua 5.3 manual for a detailed description):

_VERSION, assert, error, getmetatable, ipairs, load, next, pairs, pcall,
print, rawequal, rawget, rawlen, rawset, select, setmetatable, tonumber,
tostring, type, xpcall

The following standard Lua libraries are available:

https://www.lua.org/manual/5.3/manual.html#6.1

string, math, table

Additions Provided by eGauge Firmware

Basic and Alert functions
All functions available to eScript are also available to Lua scripts. See the online documentation of an
eGauge meter for a complete list (Help ? Basic functions or Help ? Alert functions). When these
functions are called from Lua, they will also propagate NaN values, just like for eScript. That is, if any of the
functions are called with a NaN argument, the return value will also be NaN.

Module json
This module provides the ability to encode a Lua object to a string and safely convert a string back to an
object again.

string = json.encode(value):
This function accepts a Lua value and serializes it to the corresponding JSON string, which it
returns. Tables that contain cyclical references cannot be JSON-encoded and will result in an error.
The maximum size of the JSON-encoded string is currently limited to 4095 bytes. Lua tables may
be indexed by a mix of number, boolean, and string values, whereas JSON objects are always
indexed by strings. This function converts Lua tables that are not empty and whose indices consist
entirely of numbers in the range from 1 to N (where N is the length of the table) to JSON arrays and
everything else to JSON objects. In the latter case, numeric and boolean indices are converted to
their equivalent strings.

value = json.decode(string):
This function accepts a string and deserializes it to the corresponding Lua object. Only double-
quotes are allowed for string quoting. White space consisting of blanks or tabs is ignored.

Module persistent
This module provides variables whose values persist across power outages and device restarts.

obj = persistent:new(name, initial, description):
Declares a persistent variable with the specified name. Unlike Lua names, this name can be an
arbitrary string. The name must be unique as any Lua script declaring a persistent variable of the
same name will access the same underlying object. If this is the first time the persistent variable has
been declared, its value is set to initial. The purpose of the variable must be described by the
string passed for description. The return value is an object representing the persistent variable.

obj:get()

Returns the current value of the persistent variable represented by object obj.

https://www.lua.org/manual/5.3/manual.html#6.4
https://www.lua.org/manual/5.3/manual.html#6.7
https://www.lua.org/manual/5.3/manual.html#6.6

obj:set(value)

Sets the value of the persistent variable represented by object obj to value. Any value acceptable
to json.encode() may be set.

Lua Environment for Control Scripts
Control scripts have access to the standard environment available as described in the previous section.

They also have access to all basic and alert functions as well as to the coroutine library. Several low-level

functions as well as several convenience modules are available as well, as described below.

Low-level Functions
Most of these functions are normally not used directly. They provide the low-level mechanisms required to
implement the higher-level abstractions provided by the modules described in the sections below.

tid, err = __ctrl_submit(attrs, method, args…)

Submit a call to the method named method on the device identified by attrs, passing arguments
args. The method name must be a string, attrs a table of name/value pairs, and args must be a
sequence of zero or more Lua argument values that are compatible with the argument types
expected by the named method. The method name may be a fully qualified method name consisting
of an interface name, immediately followed by a dot (.), immediately followed by the proper method
name or a proper method name on its own. In the latter case, the method is invoked through the first
interface registered for the device that implements the named method. Otherwise, the method is
invoked through the named interface.

__ctrl_submit returns two values: a transaction id tid and an error string err. On success, tid is
a non-negative number which uniquely identifies the newly created call object and err is nil. On
error, tid is a negative error code (see ctrl.Error below) and err is an optional string that may
provide an explanation of why the call failed. The error string, if provided, is typically translated to
the locale set on the meter.

status, result = __ctrl_result(tid):
Get the result for the method call identified by transaction id tid. The tid must be non-negative
and must have been returned by a previous call to __ctrl_submit.

__ctrl_result returns two values: an integer status and result. The status is zero on
success, in which case result is the result returned by the method call, converted to a Lua value.
On error, status is a negative error code (see ctrl.Error below) and result is nil. In
particular, if a method call is still in progress, error code ctrl.Error.AGAIN (-8) is returned. In
this case, the caller should wait for a little bit and then retry the __ctrl_result call again until it
succeeds.

status, err = __ctrl_cancel(tid):
Attempt to cancel the method call identified by transaction id tid. This tid must be non-negative
and must have been returned by a previous call to __ctrl_submit.

https://www.lua.org/manual/5.3/manual.html#6.2

__ctrl_cancel returns two values: an integer status and an optional error string err. The
status is zero on success, in which case tid is guaranteed to be an invalid transaction id, until it is
reused and returned by another call to __ctrl_submit. On error, status is a negative error code
(see ctrl.Error below) and err is an optional string that may provide an explanation of why the
call failed. The error string, if provided, is typically translated to the locale set on the meter.

ret, err = __ctrl_get_devices(attrs):
Get a list of devices that match the optional attributes specified by table attrs. If the attrs is
omitted or nil, a list of all known (registered) devices is returned.

__ctrl_get_devices returns two values: table ret and an optional error string err. On success,
ret is a list of tables and err is nil. Each table in the returned list corresponds to a matching
device in no particular order. The table contains the name/value pairs registered for that device.

On error, ret is nil and err may be a non-nil string explaining what went wrong, typically
translated to the locale set on the meter.

ret = __ctrl_get_interface(name):
Get a particular interface or a list of all known interfaces. Argument name must be a string that
names the desired interface or omitted or nil to get a list of all interfaces.

__ctrl_get_interface returns a single value ret. If there was an error or if the requested
interface cannot be found, nil is returned. Otherwise, ret is a single interface (if name was
specified) or a list of interfaces (if name was omitted or nil). Each interface is described by a table
with the following members:

name: The name of the interface as a string.

methods: A list of methods implemented by the interface.

Each method is described by a table with the following members:

name: The name of the method as a string.

arg_types: The DBus type signature of the arguments as a string.

ret_type: The DBus type signature of the return value as a string.

doc: A description of what the method does as a string. This string may contain references to the
arguments which are enclosed in <arg>/</arg> tags. For example, the string "
<arg>foo</arg>" would refer to the method argument named "foo".

arg_names: A string of comma-separated argument names, in order of appearance. This is used
only for documentation purposes as, other than in the doc string, the argument names have no
significance. For example, the string "foo,bar" would indicate that the method expects two
arguments, which are referred to in the doc string as argument names foo and bar, respectively.

ret = __sleep(time):
Suspend execution of the call for time seconds. The specified time may be a fractional amount, not
just an integer amount. If the Lua program calling __sleep has other runnable coroutines, the other
coroutines are executed. If there are no runnable coroutines left, execution of the program is
suspended for the minimum amount of time required until the first coroutine becomes runnable
again.

The function returns an integer ret which is zero on success or negative if an error occurred.

ret = sleep(time):
This is an alias for __sleep and may be used by end-user Lua programs as a convenience.
Libraries should always call __sleep instead to ensure the intended function is executed even if a
Lua program redefines the name sleep to another value.

Module ctrl
This module provides a higher-level interface to invoke control methods. It is generally preferable to use this
module rather than the low-level functions documented by the previous section.

dev = ctrl:dev(attrs, obj):
Create a control device object with attributes attrs. The optional obj argument could be specified
to implement an extended control device class, but is usually omitted (or you could pass nil to it) to
create a new object. This operation does not communicate with the remote device identified by
attrs and therefore returns immediately.

iface = dev:interface(name):
Create an interface object for the interface identified by name of device dev. The returned interface
object will contain a proxy method for each method defined by the named interface. The proxy
methods can be called like any other method and automatically forward the call to the control device
and then wait for the result to become available from the device. As such, these operations can take
a long time to complete and will call __sleep() as needed. Because of this, other coroutines may
be executed while a proxy method call is in progress.

status, result = dev:call(method, args…)

Call the method named method on device dev, passing arguments args to it and return the result.
The method name must be a string and args must be a sequence of zero or more Lua argument
values that are compatible with the argument types expected by the named method. The method
name may be a fully qualified method name consisting of an interface name, immediately followed by
a dot (.), immediately followed by the proper method name or a proper method name on its own. In
the latter case, the method is invoked through the first interface registered for the device that
implements the named method. Otherwise, the method is invoked through the named interface.

Two values are returned: an integer status and result. The status is zero on success, in which
case result is the result returned by the named method, converted to a Lua value. On error,
status is a negative error code (see ctrl.Error below) and result is nil.

Error:
This table declares symbolic names for various control errors, namely:

UNSPEC (-1): An unspecified error occurred.

INVAL (-2): An invalid or incompatible argument was passed to a method.

NODEV (-3): The device attributes specified an invalid device path.

ATTRS (-4): The attributes do not match the selected device.

NOMETHOD (-5): The method name could not be found.

NOENT (-6): The specified transaction id could not be found.

BUSY (-7): The device is busy (too many pending calls).

AGAIN (-8): The call is still pending.

Module tasks
This module provides a convenient interface for creating several tasks that may be run quasi concurrently
and then executing them until they have all completed.

tasks:add(fun, args…):
Add a task which, when executed, runs function fun with arguments args until the function returns.
The function may call __sleep or coroutine.yield to suspend execution temporarily and give
other tasks a chance to execute.

tasks:run():
Execute previously added tasks until they have all completed.

Lua Scripting

Creating and Using Lua
scripts

eGauge meters in firmware 4.1 and later have built-in Lua scripting functionality. The eGauge Lua
script editor may be accessed from the Mobile Friendly interface.

Refer to the Lua Scripting Overview article for full details about the meter's Lua scripting interface.

If using the classic interface, click on View -> Mobile-Friendly:

Next, navigate to Setup -> Lua and choose the appropriate script type:

Lua scripting is an advanced topic. eGauge Support cannot review code and has limited
support for troubleshooting Lua scripts.

https://kb.egauge.net/books/advanced-egauge-operation/page/lua-scripting-overview
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406675023.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406732271.png

Formulas script
Creating lua functions in the Formulas script editor will allow the functions to be used in a formula
register. For example, here are two functions made in the Lua Formulas script editor that will return
the min or max of two numbers:

They may then be used in a formula register:

And we may see the registers work as defined by the script functions:

Tariff script

https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676406949779.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407153301.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407218019.png

Advanced time-of-use or tiered billing may be performed in this Lua scrript.

A tariff script should provide (at least) a cost(register, negate, schedule) function which
calculates the incremental cost based on the energy-use recorded by register. negate can be set to
true if the register's value counts down for power consumption. schedule is optional and can be set
to the (non-default) name of the schedule to use when calculating the cost.

A formula register of type "monetary" would be used with the cost() function.

For an example billing script, from the classic interface:

1. Navigate to Settings -> Billing.
2. Choose Xcel Colorado as the tariff provider.
3. Click "OK" to save and go back to the main settings page.
4. Go back to Settings -> Billing.
5. Change the tariff providert to "custom"
6. Click the "Customize tariff script" button, which will open a copy of the Xcel Colorado

billing tariff in the Lua script editor.

Alerts script
Alerts scripts work the same as Formula scripts, but are used in eGauge meter alerts, configured in
Settings -> Alerts.

Control script

Control scripts can be used to confrol supported equipment such as the eGauge Power Relay
Module (PRM3).

For example, the following script reads the instantaneous value of a register called "Temperature"
and controls a PRM3 relay contact. If the temperature is lower than 21 C, relay number 0 of the
PRM3 is closed (activated), otherwise it opens (turns off) relay number 0. It then sleeps for 15
minutes before checking again.

In the real world, the control script should be more advanced

See the main Lua Scripting Overview Control Scripts section for additional Lua Control
environment information.

There is high risk of damaging external equipment using control scripts. Only skilled Lua
developers familiar with the eGauge meter and software should attempt to use Lua control
scripts.

https://kb.egauge.net/link/321#bkmrk-lua-environment-for-

dev = ctrl:dev({interface='relay'})
relay = dev:interface('relay')

while true do
 print("Temperature is currently: " .. __r("Temperature"))
 if __r("Temperature") < 21 then
 relay:close(0)
 else
 relay:open(0)
 end
 sleep(60*15)
end

Persistent variables
See the main Lua Scripting Overview section on Persistent variables.

Persistent variables are variables that are preserved between reboots or power cycles.

The following Formula script creates and updates a peristent variables with a given name and
number passed to it in a formula register, and prints debug to the output log:

A register is configured to run the formula script:

This creates or updates a persistent variable called "variable test 1" with the current time.

function persistent_variable_example(name, number)

 obj = persistent:new(name, number, "Variable stored by formula function persistent_variable_example")

 current_value = obj:get()
 print(name .. " currently has value " .. current_value)

 print("updating " .. name .. "to new value " .. number)

 obj:set(number)
end

https://kb.egauge.net/link/321#bkmrk-module-persistent
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676411385422.png

The Formula script editor shows the print debug as the variable is updated once a second as the
formula register is run:

While this particular example is rather pointless, persistent variables may be used in any Lua
scripts. Control scripts are executed continuously, and a formula register would not need to be
created to run it.

15:26:28.168 variable test 1 currently has value 22.043333333333
15:26:28.168 updating variable test 1 to new value 22.043611111111
15:26:29.171 variable test 1 currently has value 22.043611111111
15:26:29.172 updating variable test 1 to new value 22.043888888889
15:26:30.168 variable test 1 currently has value 22.043888888889
15:26:30.168 updating variable test 1 to new value 22.044166666667
15:26:31.168 variable test 1 currently has value 22.044166666667
15:26:31.168 updating variable test 1 to new value 22.044444444444

