
Lua Scripting
Lua Scripting Overview
Creating and Using Lua scripts

Lua Scripting Overview

Introduction
Support for eGauge Script (eScript) was introduced in firmware v1.1, allowing limited scripting through the

use of formula registers. eScript was designed for calculating basic and common mathematical formulas

such basic arithmetic operations, comparisons, and conditionals, along with the ability to call library routines
(functions).

Firmware v4.1 introduced Lua v5.3 support. To ensure safe operation, Lua execution is guarded with

timeouts to protect against infinite loops or unacceptably long execution times. Additionally, a restricted set
of standard libraries is supported.

To maintain backwards compatibility, firmware transparently translates eScript expressions to Lua scripts
before execution and the Lua execution environment provides all the functions available within eScript.

Lua Primer

Lexical Conventions
Names may consist of any letters, digits, or underscores but may not start with a digit. Numeric values use
 the same conventions as in most other languages, including the ability to write hexadecimal values with a
prefix of 0x. The two boolean literal values are true and false. A variable with an undefined value is nil
. Strings may be enclosed in double or single quotes. Characters within a string may be escaped with a
backslash. Comments start with a double-dash (--) and extend to the end of the line. Statements may be
terminated with a semicolon but, generally, semicolons are not required (even when there are multiple
statements on a single line). The only exception to this rule is that a semicolon is required if the following
statement starts with a left parenthesis.

Variables
Variables are global unless explicitly declared as local. For example:

Operators
Lua provides a normal set of operators for arithmetic operations and comparisons. A bit unusual is that the
inequality operator is ~= rather than the more typical !=. Logical operators use keywords like in Python:

Lua scripting is an advanced topic. eGauge Support cannot review code and has limited
support for troubleshooting Lua scripts.

x = 10 -- global variable
local y = 42 -- local variable

https://kb.egauge.net/books/advanced-egauge-operation/page/formula-registers-and-remote-devices
https://www.lua.org/manual/5.3/

and, or, and not. The length of a string or a table (see Structured Data) is obtained by prefixing the string

or table name with a hash mark. #'hi' would return 2, for example. Strings can be concatenated with the
double-dot operator. 'yell'..'ow' would yield 'yellow', for example.

Control Structures
The syntax for the various control structures is:

You can use break to exit a loop but, unlike in C and other languages, there is no continue that would
allow you to skip to the next iteration.

Structured Data
Lua uses tables to represent both arrays and hash tables (Python dictionaries, Javascript objects). For
example:

assigns an array containing the strings 'a', 'b', and 'c' to local variable a. Unlike in most other
languages, the array base index is 1, so a[1] would yield the first element or 'a' in our example.

Dictionary literal values can be written like this:

for index=initial,step,final do block end -- numeric for loop

for var in iterator do block end -- iterator for loop

while cond do block end -- while loop

repeat block until cond -- do while loop

if cond then block else block end -- conditional statement

local a = {'a', 'b', 'c'}

https://kb.egauge.net/link/321#bkmrk-structured-data

and indexed with square brackets such that d['k2'] would yield 'v2', for example. If the keys for a
dictionary happen to be valid Lua names, the square brackets and quotes around the key strings can be
omitted. For example, the above example could be simplified to:

For such key values, it is also possible to access their values using member-name syntax. For example,
d.k1 would yield 'v1', just as d['k1'] would.

Migrating from eScript to Lua
Most of eScript has a direct equivalent in Lua. eScript has full support for a single numeric type (IEEE754
double precision float) and limited support for strings. As configured for the eGauge firmware, Lua has the
same numeric type but also supports 32-bit integers and has full support for strings, boolean values, and
tables.

The most important differences between eScript and Lua are as follows:

In eScript, the value of a register is obtained with $"register_name", whereas in Lua, the
equivalent expression is __r("register_name").

Lua boolean values cannot directly be used as numeric values, whereas eScript uses 0 to
represent false and any non-zero value for true.

Lua does not provide a direct analog for the conditional operator

Instead, Lua uses the logical expression

This works quite similarly to the eScript conditional because of the way the and and or operators are
defined. Specifically, and returns false if the left-hand side is nil or false or the right-hand
side's value otherwise. Operator or returns the value of the left-hand side if it is not nil or false
and the value of the right-hand side otherwise. Both operators short-circuit evaluation and operator
and has higher precedence than or.

eScript automatically propagates NaN (Not-a-Number) values. For example, if any function is
called with a NaN value, the returned result is also NaN. Similarly, if the condition of the

local d = {['k1']='v1', ['k2']='v2'}

local d = {k1='v1', k2='v2'}

cond ? if_true_expr : if_false_expr

cond and if_true_expr or if_false_expr

conditional operator is NaN, then the result of the conditional expression is also NaN.

Given the similarities between eScript and Lua, most eScript expressions trivially translate to Lua. The non-
trivial translations are shown in the table below:

eScript expression Lua equivalent

a < b __lt(a, b)

a <= b __le(a, b)

a > b __gt(a,b)

a >= b __ge(a,b)

a = b __eq(a,b)

c ? a : b (function(__c)
 if __c ~= __c then return __c end
 return __c~=0 and (a) or (b)
 end)(c)

In words, the comparison operators get translated to calls to helper functions __lt(), __le() and so on.
These helper functions check if either a or b is a NaN and return NaN, if so. If not, they perform the
comparison and return 0 for false and 1 for true. The translation of the conditional operator is more
complicated because care has to be taken to handle NaN properly and to evaluate a and b only when
necessary. This is accomplished in Lua with the help of an anonymous inline function which checks
whether the condition is NaN and returns NaN if that is the case. Otherwise, the function checks if the
condition has a non-zero value and, if so, returns the value of a. Otherwise, it returns the value of b.

Lua Environment provided by eGauge Firmware

Standard Environment
For safety reasons, the eGauge firmware provides a restricted Lua environment (the Lua sandbox). Basic

functions and variables are limited to the following subset (see Lua 5.3 manual for a detailed description):

_VERSION, assert, error, getmetatable, ipairs, load, next, pairs, pcall,
print, rawequal, rawget, rawlen, rawset, select, setmetatable, tonumber,
tostring, type, xpcall

The following standard Lua libraries are available:

string, math, table

https://www.lua.org/manual/5.3/manual.html#6.1
https://www.lua.org/manual/5.3/manual.html#6.4
https://www.lua.org/manual/5.3/manual.html#6.7
https://www.lua.org/manual/5.3/manual.html#6.6

Additions Provided by eGauge Firmware

Basic and Alert functions
All functions available to eScript are also available to Lua scripts. See the online documentation of an
eGauge meter for a complete list (Help ? Basic functions or Help ? Alert functions). When these
functions are called from Lua, they will also propagate NaN values, just like for eScript. That is, if any of the
functions are called with a NaN argument, the return value will also be NaN.

Module json
This module provides the ability to encode a Lua object to a string and safely convert a string back to an
object again.

string = json.encode(value):
This function accepts a Lua value and serializes it to the corresponding JSON string, which it
returns. Tables that contain cyclical references cannot be JSON-encoded and will result in an error.
The maximum size of the JSON-encoded string is currently limited to 4095 bytes. Lua tables may
be indexed by a mix of number, boolean, and string values, whereas JSON objects are always
indexed by strings. This function converts Lua tables that are not empty and whose indices consist
entirely of numbers in the range from 1 to N (where N is the length of the table) to JSON arrays and
everything else to JSON objects. In the latter case, numeric and boolean indices are converted to
their equivalent strings.

value = json.decode(string):
This function accepts a string and deserializes it to the corresponding Lua object. Only double-
quotes are allowed for string quoting. White space consisting of blanks or tabs is ignored.

Module persistent
This module provides variables whose values persist across power outages and device restarts.

obj = persistent:new(name, initial, description):
Declares a persistent variable with the specified name. Unlike Lua names, this name can be an
arbitrary string. The name must be unique as any Lua script declaring a persistent variable of the
same name will access the same underlying object. If this is the first time the persistent variable has
been declared, its value is set to initial. The purpose of the variable must be described by the
string passed for description. The return value is an object representing the persistent variable.

obj:get()

Returns the current value of the persistent variable represented by object obj.

obj:set(value)

Sets the value of the persistent variable represented by object obj to value. Any value acceptable
to json.encode() may be set.

Lua Environment for Control Scripts
Control scripts have access to the standard environment available as described in the previous section.

They also have access to all basic and alert functions as well as to the coroutine library. Several low-level

functions as well as several convenience modules are available as well, as described below.

Low-level Functions
Most of these functions are normally not used directly. They provide the low-level mechanisms required to
implement the higher-level abstractions provided by the modules described in the sections below.

tid, err = __ctrl_submit(attrs, method, args…)

Submit a call to the method named method on the device identified by attrs, passing arguments
args. The method name must be a string, attrs a table of name/value pairs, and args must be a
sequence of zero or more Lua argument values that are compatible with the argument types
expected by the named method. The method name may be a fully qualified method name consisting
of an interface name, immediately followed by a dot (.), immediately followed by the proper method
name or a proper method name on its own. In the latter case, the method is invoked through the first
interface registered for the device that implements the named method. Otherwise, the method is
invoked through the named interface.

__ctrl_submit returns two values: a transaction id tid and an error string err. On success, tid is
a non-negative number which uniquely identifies the newly created call object and err is nil. On
error, tid is a negative error code (see ctrl.Error below) and err is an optional string that may
provide an explanation of why the call failed. The error string, if provided, is typically translated to
the locale set on the meter.

status, result = __ctrl_result(tid):
Get the result for the method call identified by transaction id tid. The tid must be non-negative
and must have been returned by a previous call to __ctrl_submit.

__ctrl_result returns two values: an integer status and result. The status is zero on
success, in which case result is the result returned by the method call, converted to a Lua value.
On error, status is a negative error code (see ctrl.Error below) and result is nil. In
particular, if a method call is still in progress, error code ctrl.Error.AGAIN (-8) is returned. In
this case, the caller should wait for a little bit and then retry the __ctrl_result call again until it
succeeds.

status, err = __ctrl_cancel(tid):
Attempt to cancel the method call identified by transaction id tid. This tid must be non-negative
and must have been returned by a previous call to __ctrl_submit.

https://www.lua.org/manual/5.3/manual.html#6.2

__ctrl_cancel returns two values: an integer status and an optional error string err. The
status is zero on success, in which case tid is guaranteed to be an invalid transaction id, until it is
reused and returned by another call to __ctrl_submit. On error, status is a negative error code
(see ctrl.Error below) and err is an optional string that may provide an explanation of why the
call failed. The error string, if provided, is typically translated to the locale set on the meter.

ret, err = __ctrl_get_devices(attrs):
Get a list of devices that match the optional attributes specified by table attrs. If the attrs is
omitted or nil, a list of all known (registered) devices is returned.

__ctrl_get_devices returns two values: table ret and an optional error string err. On success,
ret is a list of tables and err is nil. Each table in the returned list corresponds to a matching
device in no particular order. The table contains the name/value pairs registered for that device.

On error, ret is nil and err may be a non-nil string explaining what went wrong, typically
translated to the locale set on the meter.

ret = __ctrl_get_interface(name):
Get a particular interface or a list of all known interfaces. Argument name must be a string that
names the desired interface or omitted or nil to get a list of all interfaces.

__ctrl_get_interface returns a single value ret. If there was an error or if the requested
interface cannot be found, nil is returned. Otherwise, ret is a single interface (if name was
specified) or a list of interfaces (if name was omitted or nil). Each interface is described by a table
with the following members:

name: The name of the interface as a string.

methods: A list of methods implemented by the interface.

Each method is described by a table with the following members:

name: The name of the method as a string.

arg_types: The DBus type signature of the arguments as a string.

ret_type: The DBus type signature of the return value as a string.

doc: A description of what the method does as a string. This string may contain references to the
arguments which are enclosed in <arg>/</arg> tags. For example, the string "
<arg>foo</arg>" would refer to the method argument named "foo".

arg_names: A string of comma-separated argument names, in order of appearance. This is used
only for documentation purposes as, other than in the doc string, the argument names have no
significance. For example, the string "foo,bar" would indicate that the method expects two
arguments, which are referred to in the doc string as argument names foo and bar, respectively.

ret = __sleep(time):
Suspend execution of the call for time seconds. The specified time may be a fractional amount, not
just an integer amount. If the Lua program calling __sleep has other runnable coroutines, the other
coroutines are executed. If there are no runnable coroutines left, execution of the program is
suspended for the minimum amount of time required until the first coroutine becomes runnable
again.

The function returns an integer ret which is zero on success or negative if an error occurred.

ret = sleep(time):
This is an alias for __sleep and may be used by end-user Lua programs as a convenience.
Libraries should always call __sleep instead to ensure the intended function is executed even if a
Lua program redefines the name sleep to another value.

Module ctrl
This module provides a higher-level interface to invoke control methods. It is generally preferable to use this
module rather than the low-level functions documented by the previous section.

dev = ctrl:dev(attrs, obj):
Create a control device object with attributes attrs. The optional obj argument could be specified
to implement an extended control device class, but is usually omitted (or you could pass nil to it) to
create a new object. This operation does not communicate with the remote device identified by
attrs and therefore returns immediately.

iface = dev:interface(name):
Create an interface object for the interface identified by name of device dev. The returned interface
object will contain a proxy method for each method defined by the named interface. The proxy
methods can be called like any other method and automatically forward the call to the control device
and then wait for the result to become available from the device. As such, these operations can take
a long time to complete and will call __sleep() as needed. Because of this, other coroutines may
be executed while a proxy method call is in progress.

status, result = dev:call(method, args…)

Call the method named method on device dev, passing arguments args to it and return the result.
The method name must be a string and args must be a sequence of zero or more Lua argument
values that are compatible with the argument types expected by the named method. The method
name may be a fully qualified method name consisting of an interface name, immediately followed by
a dot (.), immediately followed by the proper method name or a proper method name on its own. In
the latter case, the method is invoked through the first interface registered for the device that
implements the named method. Otherwise, the method is invoked through the named interface.

Two values are returned: an integer status and result. The status is zero on success, in which
case result is the result returned by the named method, converted to a Lua value. On error,
status is a negative error code (see ctrl.Error below) and result is nil.

Error:
This table declares symbolic names for various control errors, namely:

UNSPEC (-1): An unspecified error occurred.

INVAL (-2): An invalid or incompatible argument was passed to a method.

NODEV (-3): The device attributes specified an invalid device path.

ATTRS (-4): The attributes do not match the selected device.

NOMETHOD (-5): The method name could not be found.

NOENT (-6): The specified transaction id could not be found.

BUSY (-7): The device is busy (too many pending calls).

AGAIN (-8): The call is still pending.

Module tasks
This module provides a convenient interface for creating several tasks that may be run quasi concurrently
and then executing them until they have all completed.

tasks:add(fun, args…):
Add a task which, when executed, runs function fun with arguments args until the function returns.
The function may call __sleep or coroutine.yield to suspend execution temporarily and give
other tasks a chance to execute.

tasks:run():
Execute previously added tasks until they have all completed.

Creating and Using Lua
scripts

Introduction
eGage meters have a Lua scripting environment that allows for creation of advanced formula
register and alert functions, as well as automated control of supported devices such as the eGauge
PRM3 Power Relay Module.

Refer to the Lua Scripting Overview article for a general Lua primer and additional modules
provided by the eGauge firmware.

Lua scripting interface

Lua scripting is an advanced topic. eGauge Support has limited support for troubleshooting
Lua scripts and cannot review Lua code.

Use caution and test extensively when using Lua scripts for automated control of remote
devices to prevent unexpected operation or damage to connected equipment.

Use the latest firmware: Lua support was added in eGauge meter firmware version 4.1.
However, bug fixes and new features this article refers to may have been added in newer
firmware versions. Click here for information about checking and updating a meter's
firmware.

https://www.lua.org/about.html
https://www.egauge.net/support/m/prm3
https://www.egauge.net/support/m/prm3
https://kb.egauge.net/books/advanced-egauge-operation/page/lua-scripting-overview
https://www.egauge.net/revs/#4.1
https://kb.egauge.net/books/egauge-meter-ui/page/checking-and-upgrading-firmware

Several keyboard shortcuts are displayed when the interface is loaded:

F1 : Open the keyboard shortcuts menu
F2 : Toggle the sidebar on the right
Ctrl-␣ : Toggle auto-complete
Ctrl-, : Open the GUI settings menu

When using Mac, use the ⌘ key instead of Ctrl.

The eGauge web interface has a built-in Lua script editor with 3 panes as shown in the above
screenshot.

Editor (top left)— The Lua code editor. There are 4 buttons for this pane:
[1] Save: This saves the functions and makes them available for use by the meter.
[2] Search: This allows to search for and replace text in the code.
[3] Upload: This replaces the current script on the meter with a file upload.
[4] Download: This downloads the current script from the meter as a file

Output log (bottom left)— Below the editor, the Lua log is displayed. This will include any
script errors or print statements. If there are no custom Lua functions for the script
loaded, there may be an error such as "Lua error: cannot open xxx.lua: No such file or
directory", and this error may be ignored. There are 4 buttons available for this pane:

[5] Filter: Apply a filter to only output log lines containing certain text
[6] Autoscroll: Toggles auto-scrolling to the most recent log output
[7] Download: Downloads the log file
[8] Maximize Window: Maximizes the log output window

Sidebar (right)— the sidebar on the right-hand side provides a method explorer to find
and describe all available eGauge-provided functions and modules. The function or
module may be clikced on to automatically insert it into the Editor pane to the left. The

https://kb.egauge.net/uploads/images/gallery/2024-04/image-1714160404297.png

sidebar has a search bar [9] to conveniently search through methods, functions and
documentation

Accessing the Lua scripting environment
1. If using the classic interface, click on View → Modern user-interface:

2. Navigate to Setup → Lua and choose the appropriate script type:

Script Types
Click to expand information for the script type:

Formulas script (formula registers)

Creating lua functions in the Formulas script editor will allow the functions to be used in a
formula register.

For example, here are two functions made in the Lua Formulas script editor that will return the
min or max of two numbers:

They may then be used in a formula register:

And we may see the registers work as defined by the script functions:

-- function returning the larger of two numbers
function lua_max(num1, num2)
 if (num1 > num2) then
 result = num1;
 else
 result = num2;
 end
 return result;
end

--function returning the lesser of two numbers
function lua_min(num1, num2)
 if (num1 < num2) then
 result = num1;
 else
 result = num2;
 end
 return result;
end

Tariff script (Advanced time-of-use and tiered billing)

https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407153301.png
https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676407218019.png

Advanced time-of-use and tiered billing may be performed in this Lua scrript.

A tariff script should provide (at least) a cost(register, negate, schedule) function
which calculates the incremental cost based on the energy-use recorded by register. negate
can be set to true if the register's value counts down for power consumption. schedule is
optional and can be set to the (non-default) name of the schedule to use when calculating the
cost.

A formula register of type "monetary" would be used with the cost() function.

For an example billing script, from the classic interface:

1. Navigate to Settings → Billing.
2. Choose Xcel Colorado as the tariff provider.
3. Click "OK" to save and go back to the main settings page.
4. Go back to Settings → Billing.
5. Change the tariff providert to "custom"
6. Click the "Customize tariff script" button, which will open a copy of the Xcel Colorado

billing tariff in the Lua script editor.

Alert script

Alerts scripts work the same as Formula scripts, but are used in eGauge meter alerts,
configured in Settings → Alerts.

Control scripts

Control scripts can be used to confrol supported equipment such as the eGauge Power Relay
Module (PRM3).

For example, the following script reads the instantaneous value of a register called
"Temperature" and controls a PRM3 relay contact. If the temperature is lower than 21 C, relay
number 0 of the PRM3 is closed (activated), otherwise opens (turns off) relay number 0. It then
sleeps for 15 minutes before checking again.

See the main Lua Scripting Overview Control Scripts section for additional Lua Control
environment information.

There is risk of damaging external equipment using control scripts. Only skilled Lua
developers familiar with the eGauge meter and software should attempt to use Lua
control scripts.

https://kb.egauge.net/link/321#bkmrk-lua-environment-for-

In the real world, the control script should be more advanced

dev = ctrl:dev({interface='relay'})
 relay = dev:interface('relay')

 while true do
 print("Temperature is currently: " .. __r("Temperature"))
 if __r("Temperature") < 21 then
 relay:close(0)
 else
 relay:open(0)
 end
 sleep(60*15)
 end

Persistent variables

See the main Lua Scripting Overview section on Persistent variables.

Persistent variables are variables that are preserved between reboots or power cycles.

The following Formula script creates and updates a peristent variables with a given name and
number passed to it in a formula register, and prints debug to the output log:

A register is configured to run the formula script:

function persistent_variable_example(name, number)

 obj = persistent:new(name, number, "Variable stored by formula function persistent_variable_example")

 current_value = obj:get()
 print(name .. " currently has value " .. current_value)

 print("updating " .. name .. "to new value " .. number)

 obj:set(number)
 end

https://kb.egauge.net/link/321#bkmrk-module-persistent

This creates or updates a persistent variable called "variable test 1" with the current time.

The Formula script editor shows the print debug as the variable is updated once a second as
the formula register is run:

While this particular example is rather pointless, persistent variables may be used in any Lua
scripts. Control scripts are executed continuously, and a formula register would not need to be
created to run it.

15:26:28.168 variable test 1 currently has value 22.043333333333
15:26:28.168 updating variable test 1 to new value 22.043611111111
15:26:29.171 variable test 1 currently has value 22.043611111111
15:26:29.172 updating variable test 1 to new value 22.043888888889
15:26:30.168 variable test 1 currently has value 22.043888888889
15:26:30.168 updating variable test 1 to new value 22.044166666667
15:26:31.168 variable test 1 currently has value 22.044166666667
15:26:31.168 updating variable test 1 to new value 22.044444444444

https://kb.egauge.net/uploads/images/gallery/2023-02/image-1676411385422.png

